Jump to content

Blogs

Featured Entries

  • Dr. Mike

    Easily Create 3D Printable Muscle and Skin STL Files from Medical CT Scans

    By Dr. Mike

    In this tutorial we will learn how to use the free medical imaging conversion service on embodi3D.com to create detailed anatomic muscle and skin 3D printable models in STL file format from medical CT scans. Muscle models show the detailed musculature by subtracting away the skin and fat. Even when created from a scan of an obese person, the model looks like it comes from a bodybuilder, Figure 1A. Skin models show an exact replica of the skin surface. The finest details are captured, including wrinkles and veins underneath the skin. Hair however is not captured in a CT scan and thus the model does not have any hair, Figure 1B. Figure 1A (left): A muscle 3D printable model. Figure 1B (right): A skin 3D printable model   These models can be used for a variety of purposes such as medical and scientific education and research. Additionally, the skin models can be used to re-create a person's likeness in 3D from a medical scan. If you have had a CT scan of the head, you can create a lifelike replica of your head. You can create replicas of your friends, family, or even pets if they have had a medical CT scan. Alternatively, if you have a loved one who passed away but had a CT scan prior to death, you can use the scan to re-create an exact replica of their face. Even scans that are years old can be used for this purpose. Some people may consider this to be a little creepy, so if you are considering doing this think carefully first.   Before proceeding please register for an embodi3D.com account if you haven't already. You will need an account to use the service. It is highly recommended that you download the associated file pack for this tutorial so that you can follow along with the exact same files that are used in this tutorial.   >> DOWNLOAD THE FREE FILE PACK BY CLICKING HERE <<   If you are interested in learning how to use the free embodi3D.com service, see my prior tutorials on creating bone models, processing multiple models simultaneously, and sharing and selling your models on the embodi3D.com website.       If you are interested in converting your own CT scan or that of a friend or family member, you can go to the radiology department of the hospital or clinic that did the scan and ask for the scan to be put on a CD or DVD for you. Figure 2 shows the radiology department at my hospital, called Image Management, and the CDs that they give out. Most radiology departments will have you sign a written release and give you a CD or DVD for free or with a small processing fee. If you are a doctor or other healthcare provider and want to 3D print a model for a patient, the radiology department can also help you. There are multiple online repositories of anonymized CT scans for research that are also available. If you have downloaded the file pack for this tutorial, example CT scans are included   Figure 2A, the Image Management (radiology) department at my hospital, where you can pick up a DVD of your CT scan as shown in Figure 2B (right). My hospital does this for free, but some may charge a trivial fee.   PART 1: Creating a Muscle STL model from NRRD File   Before we begin please bear in mind that this process only works for CT scan images. It will not work for MRI images. Before proceeding please check that the scan you wish to convert is a CT (CAT) scan!   Step 1: Convert Your CT scan to an Anonymized NRRD File with 3D Slicer Open 3D Slicer. If you don't have the software program you can download it for free from slicer.org. Once Slicer has opened, take the folder from the download pack that is called STS_004. This folder contains anonymized DICOM images from a CT scan of the legs of a 24-year-old woman who had a muscle tumor. Drag and drop the entire folder onto the Slicer window, as shown in Figure 3. Slicer will ask you if you want to load the images into the DICOM database. Click OK. Slicer will also ask you if it should copy the images into the database, click Copy. Slicer will take about one minute to load the scanned. Figure 3: Drag-and-drop the STS_004 DICOM folder from the file pack onto the Slicer window   Next, load the scan into the active wor king area in slicer. If the DICOM browser is not open, click on the Show DICOM browser button, as shown in Figure 4. Click on the STS_004 patient and series, and click the Load button, as shown in Figure 4. The leg CT scan will now load into the active seen within Slicer, as shown in Figure 5.   Figure 4: Open the DICOM browser and load the study into the active seen   Figure 5: The leg CT scan is shown in the active seen   Step 2: Trim the Scan so that only the Right Thigh is included. Click on the Volume Rendering module from the Modules drop-down menu as shown in Figure 6. Turn on volume rendering by clicking on the eyeball button, as shown in Figure 7. Then, center the model in the 3D pane by clicking on the crosshairs button, Figure 7. If you don't have the same window layout as shown in Figure 7, you can correct this by clicking on the Four-Up window layout from the window layout drop-down menu, as shown in Figure 8.   Figure 6: Turn on the volume rendering module   Figure 7: Center the rendered volume.   Figure 8: Make sure you are in the Four-Up window layout   Next we are going to crop the volume so that we exclude everything other than the right knee and thigh. From the modules menu, select All Modules, Crop Volume, as shown in Figure 9. Turn on ROI visibility by clicking on the eyeball button, as shown in Figure 10. Then, move the region of interest box so that it only encapsulates the right thigh, as shown in Figure 10. You can adjust the size of the box by grabbing on the colored circular handles and moving the sides of the box as needed.   Figure 9: The Crop Volume module.   Figure 10: Turning on and adjusting the crop volume ROI (Region Of Interest) Once the crop volume ROI is adjusted to the area that you want, perform the crop by clicking on the Crop button, Figure 11.   Figure 11: the Crop button.   The new, smaller volume that encompasses the right fight and knee has been assigned a cryptic name. The entire scan had a name of "2: CT IMAGES – RESEARCH," and the new thigh volume has a name "2: CT IMAGES-RESEARCH-subvolume-scale_1." That's a mouthful and I want to rename it to something more descriptive. I'm going to select the Volumes module, and then select the "2: CT IMAGES-RESEARCH-subvolume-scale_1" from the Active Volume drop-down menu. Then, from the same drop-down menu I'm going to select "Rename Current Volume". Type in whatever name you want. In this case I'm choosing "right thigh."   Figure 12: Renaming the newly cropped volume.   Step 3: Save the right thigh volume as an anonymized NRRD file.   Click on the Save button in the upper left-hand corner. The save window is then shown. All the checkboxes on the left except for the one that corresponds to the right by. Make sure the file format for this line says NRRD (.nrrd). Make sure you specify the proper directory you want the file to be saved as. When you are satisfied click on save. This is demonstrated in Figure 13. In the specified directory you should see a called right thigh.nrrd. Figure 13: The save file options.   Step 4: Upload the NRRD file to embodi3D.com   Make sure you are logged into your embodi3D.com account. Click on Imag3D from the nav bar, Launch App. Then drag-and-drop your NRRD file onto the upload pain, as shown in Figure 14. Figure 14: Uploading the NRRD file to embodi3D.com.   While the file is uploading, fill in the required fields, including the name of the uploaded file, a brief description, file privacy, and license type. Except the terms of use. next, turn on Imag3D processing.  Under operation, select "CT NRRD to Muscle STL."  Leave the threshold value unchanged. Under quality, select medium or high. Specify your privacy preference for your output STL file. If you are going to share this file, you can choose to share it for free or sell it. Please see my separate tutorial on how to share and sell your files on the embodi3D.com website for additional details. When you're happy with your choices, save the file, as shown in Figure 15: Figure 15: File processing options.   Step 5: Download your new STL file after processing is completed.   In about 5 to 15 minutes you should receive an email that says your file has finished processing and is ready to download. Follow the link in the email or access the new file via your profile on the embodi3D.com website. Your newly created STL file should have several rendered thumbnails associated with it on its download page. If you want to download the file click on the Download button, as shown in Figure 16. Figure 16: the download page for your new muscle STL file   I opened the file in AutoDesk MeshMixer to have another look at it, and it looks terrific, as shown in Figure 17. This file is ready to 3D print! Figure 17: The final 3D printable muscle model. PART 2: Creating a Skin Model STL File Ready for 3D Printing Creating a skin model is essentially identical to creating the muscle model, except instead of choosing the CT NRRD to Muscle STL on the embodi3D.com service, we choose CT NRRD to Skin STL. Step 1: Load DICOM image set into Slicer   Launch Slicer. From the tutorial file pack drag and drop the MANIX folder onto the Slicer window to load this head and neck CT scan data set. This is shown in Figure 18.   Figure 18: Loading the head and neck CT scan into Slicer. It may take a minute or two to load. From the DICOM browser, click on the ANGIO CT series as shown in Figure 19.   Figure 19: Loading the ANGIO CT series from the MANIX data set   Step 2: Skip the trimming and crop volume operations   In this case we don't need to trim and crop a volume as we did with the muscle file above. We can skip Step 2. Step 3: Save the CT scan in NRRD format. Just as with the muscle file above, save the volume in NRRD format. Click on the save button, make sure that the checkbox for the nrrd file is selected and all other checkboxes are deselected. Specify the correct directory you want the file to be saved in, and click Save.   Step 4: Upload your NRRD file of the head to the embodi3D website. Just as with the muscle file process as shown above, upload the head NRRD file to the embodi3D.com website. Enter in the required fields. In this case, however, under Operation choose the CT NRRD to Skin STL operation, as shown in Figure 20. Figure 20: Selecting the CT NRRD to Skin STL file operation   Step 5: Download your new Skin STL file   After about 5 to 15 minutes, you should receive an email that says your file processing has been completed. Follow the link in the email or look for your file in the list the files you own in your profile. You should see that your skin STL file has been completed, with several rendered images, as shown in Figure 21. Go ahead and download your file. You can then check the quality of your file in Meshmixer as shown in Figure 22. In this instance everything looks great and the file is error free and ready for 3D printing.  
    Figure 21: The download page for your newly created 3D printable skin STL file.   Figure 22: Opening the file in Meshmixer for quality control checks. The file is error free and incredibly lifelike. It is ready for 3D printing.   Thank you very much! I hope you enjoyed this tutorial. If you use this service to create 3D printable models, please consider sharing your models with the embodi3D community. Here is a detailed tutorial that I wrote on exactly how to do this. This community is built on medical 3D makers helping  each other. Please share the models that you create!
     
    • 2 comments
    • 4,757 views
  • Dr. Mike

    A Ridiculously Easy Way to Convert CT Scans to 3D Printable Bone STL Models for Free in Minutes

    By Dr. Mike

    Please note the democratiz3D service was previously named "Imag3D" In this tutorial you will learn how to quickly and easily make 3D printable bone models from medical CT scans using the free online service democratiz3D®. The method described here requires no prior knowledge of medical imaging or 3D printing software. Creation of your first model can be completed in as little as 10 minutes.   You can download the files used in this tutorial by clicking on this link. You must have a free Embodi3D member account to do so. If you don't have an account, registration is free and takes a minute. It is worth the time to register so you can follow along with the tutorial and use the democratiz3D service.   >> DOWNLOAD TUTORIAL FILES AND FOLLOW ALONG << Both video and written tutorials are included in this page.           Before we start you'll need to have a copy of a CT scan. If you are interested in 3D printing your own CT scan, you can go to the radiology department of the hospital or clinic that did the scan and ask for the scan to be put on a CD or DVD for you. Figures 1 and 2 show the radiology department at my hospital, called Image Management, and the CDs that they give out. Most radiology departments will have you sign a written release and give you a CD or DVD for free or with a small processing fee. If you are a doctor or other healthcare provider and want to 3D print a model for a patient, the radiology department can also help you. There are multiple online repositories of anonymized CT scans for research that are also available.     Figure 1: The radiology department window at my hospital.       Figure 2: An example of what a DVD containing a CT scan looks like. This looks like a standard CD or DVD.       Step 1: Register for an Embodi3D account   If you haven't already done so, you'll need to register for an embodi3d account. Registration is free and only takes a minute. Once you are registered you'll receive a confirmatory email that verifies you are the owner of the registered email account. Click the link in the email to activate your account. The democratiz3D service will use this email account to send you notifications when your files are ready for download.   Step 2: Create an NRRD file with Slicer If you haven't already done so, go to slicer.org and download Slicer for your operating system. Slicer is a free software program for medical imaging research. It also has the ability to save medical imaging scans in a variety of formats, which is what we will use it for in this tutorial. Next, launch Slicer. Insert your CD or DVD containing the CT scan into your computer and open the CD with File Explorer or equivalent file browsing application for your operating system. You should find a folder that contains numerous DICOM files in it, as shown in Figure 3. Drag-and-drop the entire DICOM folder onto the Slicer welcome page, as shown in Figure 4. Click OK when asked to load the study into the DICOM database. Click Copy when asked if you want to copy the images into the local database directory.     Figure 3: A typical DICOM data set contains numerous individual DICOM files.     Figure 4: Dragging and dropping the DICOM folder onto the Slicer application. This will load the CT scan.   Once Slicer has finished loading the study, click the save icon in the upper left-hand corner as shown in Figure 5. One of the files in the list will be of type NRRD. make sure that this file is checked and all other files are unchecked. click on the directory button for the NRRD file and select an appropriate directory to save the file. then click Save, as shown in Figure 6.     Figure 5: The Save button     Figure 6: The Save File box   The NRRD file is much better for uploading then DICOM. Instead of having multiple files in a DICOM data set, the NRRD file encapsulates the entire study in a single file. Also, identifiable patient information is removed from the NRRD file. The file is thus anonymized. This is important when sending information over the Internet because we do not want identifiable patient information transmitted.   Step 3: Upload the NRRD file to Embodi3D   Now go to www.embodi3d.com, click on the democratiz3D navigation menu and select Launch App, as shown in Figure 7. Drag and drop your NRRD file where indicated. While NRRD file is uploading, fill in the "File Name" and "About This File" fields, as shown in Figure 8.     Figure 7: Launching the democratiz3D application     Figure 8: Uploading the NRRD file and entering basic information To complete basic information about your NRRD file. Do you want it to be private or do you want to share it with the community? Click on the Private File button if the former. If you are planning on sharing it, do you want it to be a free or a paid (licensed) file? Click the appropriate setting. Also select the License Type. If you are keeping the file private, these settings don't matter as the file will remain private. Make sure you accepted the Terms of Use, as shown in Figure 9.     Figure 9: Basic information fields about your uploaded NRRD file   Next, turn on democratiz3D Processing by selecting the slider under democratiz3D Processing. Make sure the operation CT NRRD to Bone STL is selected. Leave the default threshold of 150 in place. Choose an appropriate quality. Low quality produces small files quickly but the output resolution is low. Medium quality is good for most applications and produces a relatively good file that is not too large. High quality takes the longest to process and produces large output files. Bear in mind that if you upload a low quality NRRD file don't expect the high quality setting to produce a stellar bone model. Medium quality is good enough for most applications. If you wish, you have the option to specify whether you want your output file to be Private or Shared. If you're not sure, click Private. You can always change the visibility of the file later. If you're happy with your settings, click Save & Submit Files. This is shown in Figure 10.     Figure 10: Entering the democratiz3D Processing parameters.       Step 4: Review Your Completed Bone Model After about 10 to 20 minutes you should receive an email informing you that your file is ready for download. The actual processing time may vary depending on the size and complexity of the file and the load on the processing servers. Click on the link within the email. If you are already on the embodied site, you can access your file by going to your profile. Click your account in the upper right-hand corner and select Profile, as shown in Figure 11.     Figure 11: Finding your profile.   Your processed file will have the same name as the uploaded NRRD file, except it will end in "– processed". Renders of your new 3D model will be automatically generated within about 6 to 10 minutes. From your new model page you can click "Download this file" to download. If you wish to share your file with the community, you can toggle the privacy setting by clicking Privacy in the lower right-hand corner. You can edit your file or move it from one category to another under the File Actions button on the lower left. These are shown in Figure 12.     Figure 12: Downloading, sharing, and editing your new 3D printable model.   If you wish to sell your new file, you can change your selling settings under File Actions, Edit Details. Set the file type to be Paid, and specify a price. Please note that your file must be shared in order for other people to see it. This is shown in Figure 13. If you are going to sell your file, be sure you select General Paid File License from the License Type field, or specify your own customized license. For more information about selling files, click here.     Figure 13: Making your new file available for sale on the Embodi3D marketplace.     That's it! Now you can create your own 3D printable bone models in minutes for free and share or sell them with the click of a button.If you want to download the STL file created in this tutorial, you can download it here. Happy 3D printing!  
    • 3 comments
    • 29,031 views
  • embodi3d

    Selling Your Medical Model Files on Embodi3D.com

    By embodi3d

    Dear Community Members,
    After many months of work, we are happy to announce the addition of a feature that will allow you to sell medical models you have designed on Embodi3D.com. While we always have encouraged our members to consider allowing their medical STL files to be downloaded for free, we understand that when a ton of time is invested in creating a valuable and high-quality model, it is reasonable to ask for something in return. Now Embodi3D members have two options: 1) You can share your medical models for free, or 2) you can charge for them. We hope these two options encourage more sharing and file uploads. The more models available, the more it helps the medical 3D printing community.   For more details on how to sell your medical masterpieces on Embodi3D, go to the selling page.         Thanks, and happy 3D printing!
    • 0 comments
    • 675 views
 

Upcoming National Week of Making features medical 3D printing

Two years ago, the White House declared a week in mid-June the “national week of making,” to coincide with the DC Maker Faire. Since then, they have continued this tradition, providing funding and initiatives to encourage hands-on STEM education. This year’s national week of making starts on Friday, June 17-23 and DC’s Maker Faire is June 19th and 20th.   At last year’s events, President Obama said, “Makers and builders and doers— of all ages and backgrounds—have pushed our country forward, developing creative solutions to important challenges and proving that ordinary Americans are capable of achieving the extraordinary when they have access to the resources they need,” quoted on the White house blog announcing last year’s makers’ week.   In this spirit, the Department of Education launched a contest three months ago to challenge high school students to design makerspaces for their schools. They could receive support for the process, such as a six-week boot camp class to learn design skills. The top winning designs will get the funding to get their space built at their schools. Winning entries will be announced soon.   The NIH library is holding a series of events relating to healthcare to celebrate the week, including a special symposium on June 20: “Making Health: Inspiring Innovative Solutions for Research and Clinical Care” and another event at Georgetown University on June 23 that will showcase various organizations involved at the intersection of making and healthcare.   Susannah Fox, Chief Technology Officer at the U.S. Department of Health and Human Services (HHS), will give a keynote speech on how the democratization of technology can improve health. She also posted an article on Medium last week, about the department’s work in this area.   The article featured the image above, of the first makerspace designed specifically for healthcare at the Galveston University of Texas Medical Branch hospital. It’s located on a patient floor, to help nurses and patients develop and build customized objects to improve their care.   The NIH library will hold a series of classes and demos the rest of the week, including: How to print from the NIH library’s newest 3D printer Converting medical images from CT and MRI scans into 3D printable models using 3D-Slicer and ZBrush from Pixelogic Creating protein models using Chimera and how to prepare them for printing using Meshmixer An introduction to SOLIDWORKS Classes on how to use open source software such as Blender and OpenSCAD

Schools and communities are encouraged to host their own events, using the hashtags weekofmaking and nationofmakers to promote them.  
What are you doing to celebrate the national week of making?
 

3D Printing to Help Lower Maternal and Fetal Deaths

In spite of significant improvements in the field of medicine, thousands of women die each year during child birth. In fact, the number of maternal deaths in the United States has increased from 7.2 deaths per 100,000 live births in 1987 to 17.8 deaths per 100,000 live births in 2011. This worsening trend has been a matter of great concern within the medical community. Healthcare professionals and scientists are looking for newer methods to lower the incidence pregnancy-related deaths, and three-dimensional (3D) medical printing and bioprinting are playing an important role.   The 3D Placenta
Understanding the anatomy and physiology of the placenta is challenging as the organ appears only after the woman is pregnant. Many obstetricians and gynecologists lack the expertise required to promptly anticipate, diagnose and treat placenta-related conditions such as preeclampsia, which is the leading cause of maternal death across the globe.   Researchers at Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Health System and the Tissue Engineering & Biomaterials Laboratory, Fischell Department of Bioengineering at the University of Maryland have created a 3D printed placenta that replicates the complex cellular structures and extracellular matrices of the real human version. Scientists are using these 3D models to study special cells known as trophoblasts that bind to the uterine wall and promote the development of blood vessels required to nourish the fetus in the womb. Scientists predict that improper migration of the trophoblasts causes preeclampsia.   For a study published in the April, 2016, edition of American Chemical Society's Biomaterials, Science and Engineering journal, researchers injected a peptide, known as the epidermal growth factor, into a 3D printed placenta and observed its impact on trophoblast migration. Unlike 2D models that only allowed scientists to observe the movement of the cells, the 3D models helped researches analyze how the cells moved, and how they came together to bind to the uterine wall. The epidermal growth factor did produce some encouraging results and is currently undergoing further testing.   Overcoming Fetal Abnormalities
The use of 3D printing has not been limited to preeclampsia and maternal well-being. A team of surgeons at Colorado Fetal Care Center used 3D medical printing technology to create a specific model of the fetus based on the MRI scans of the mother's uterus. The model helped them understand the infant's myelomeningocele and treat it in utero. As per the National Institutes of Health, this intervention can significantly lower the need for cerebral shunts after birth.   In another case, doctors at University of Michigan’s C.S. Mott Children's Hospital used 3D medical printing technology to help deliver a baby with a walnut-sized lump around the nose that would prevent it to breathe after birth. The surgeons created a 3D model of the fetus's head using dimensions from the MRI scans of the uterus. Analysis of this model helped the surgeons choose the right method for delivery.   Further advances in 3D medical printing and bioprinting will help scientists and doctors develop innovative solutions to treat and prevent pregnancy-related complications. In the near future, this technology will become more accessible to everyone and will lead to lower maternal and fetal mortality rates.

mattjohnson

mattjohnson

 

BiologicModels uses 3D Printing to put Protein Models in Customers' Hands

Casey Steffen has a background in video game animation and a Master’s degree in biological visualization but he describes himself as a “medical illustrator and a type I diabetic” in the video introduction to his RocketHub crowdfunding page, that raised money to support a project to make educational models of the protein hemoglobin, that has 4,659 atoms. The proposal was completely funded two years ago.   The project addresses confusion surrounding the common hemoglobin A1c (HbA1c) test. Unlike the blood sugar measurement, it represents the average over three months (the lifetime of a red blood cell) of the fraction of bloodstream HbA1c (hemoglobin with sugar molecules attached as shown in the the models). If this number is above a certain range (7% for people with diabetes, according to WebMD) it means blood sugar has not been well controlled. A higher number is indicative of prolonged elevated blood sugar. It’s used for long term tracking of how patients manage their blood sugar.   The hemoglobin models provide patients with a physical and visual representation of what the test means, so they can better understand what’s going on in their body, and why it’s important to control their blood sugar. An elevated blood sugar causes damage to certain tissues, like the eyes and blood vessels in the feet, slowly, over a long period of time.   To get the hemoglobin models right, Steffen collaborated with Patricia Weber, a structural biologist and Mary Vouyiouklis, his endocrinologist. When Steffen met Michael Gulen, who was a prototype development director at a company that makes action figures, a collaboration was born. Wired Magazine covered their story about five years ago.   Steffen’s company, Biologic Models, makes models of proteins for scientific and medical education. The physical models of proteins are created from x-ray crystallography data sets. For some of the models, like the hemoglobin ones, 3D printing from a Form 1 3D printer serves to make the prototype for plaster molds, to finally cast the models in silicone.   The company partners with the 3D printing company Shapeways to print several proteins including the Zika virus shell and the Ebola virus ectodomain (the part that fuses to the cell membrane).   Digital preview of Zika virus shell
Ebola virus ectodomain  Customers can also choose to have the company provide a plan for 3D printing their favorite protein by providing its PDB ID from the protein data bank, a resource of protein structure x-ray crystallography data. Customers can then have it 3D printed or print it themselves.   Based on a post from formlabs.
 

3D Printing a Spine Model to Help a Fellow Doctor with Low Back Pain

I was recently contacted by another doctor who asked if I could help him to create a 3D printed replicate of his spine to visualize pinched nerves in his low back and aid with planning a future back surgery. In order to work this doctor has to stand for long hours while performing surgical procedures. Excruciating low back pain had limited his ability to stand to only 30 minutes. As you can imagine, this means he couldn't work. Things only got worse after he had low back surgery.   A CT scan of his lumbar spine (the low back portion of the spine) was performed. It showed that his fifth lumbar vertebra was partially sacralized. This means it looked more like a sacral vertebra than a lumbar vertebra. Was this causing his problem? On the image slices of the CT scan it was difficult to tell.   How the Spine is Organized
First, a word about the different vertebrae (bones) in the spine. There are four main sections of spinal bones. The seven cervical vertebrae are in the neck and support the head. They are generally small but flexible, and allow rotation of the head. The 12 thoracic vertebrae are in the chest. Their most distinctive characteristic is they all have associated ribs, which make up the rib cage. The five lumbar vertebrae are in the low back. These are large and strong, and designed for supporting lots of weight. They do not have associated ribs. The five sacral vertebrae are in the pelvis. In adults, they are fused together and effectively form a single bone, the sacrum. The coccyx, or tailbone, which is a tiny bone at the bottom end of the vertebral column, can be considered a fifth spinal section. This is the bone that is often injured when you fallen your behind. Figure 1 shows the different sections of the vertebral column.  
Figure 1. Sections of the vertebral column. Source:aimisspine.com   Although the bones of the individual sections of the spine usually have their own unique features, it is not uncommon for vertebrae in one section to have features typically associated with an adjacent section. This is particularly true of the vertebrae that are immediately adjacent to a neighboring section. These hybrids are a mix between both sections, are called transitional vertebrae. Do you recall that only thoracic vertebrae have associated ribs? Occasionally the highest lumbar vertebra, L1, will have tiny ribs attached to it. This is a normal variant and is usually harmless. Radiologists who are interpreting medical scans need to be careful to not confuse an L1 vertebra which may have tiny ribs for the adjacent T12 vertebra which normally has ribs. Similarly, the lowest lumbar vertebra, L5, which is normally unfused, can exhibit fusion. As you recall, fusion is a characteristic of sacral vertebrae.   A Congenital Spine Abnormality
This was the situation with our physician. His lowest lumbar vertebra, L5, has partially fused with S1, the highest sacral vertebra. This condition is congenital. He has had it all his life. The fusion can have the side effect of creating a very narrow bony canal through which the L5 nerve roots can exit the spine. Normally, these nerve roots would have much more space as a large gap would exist between the normally unfused L5 and S1 vertebrae. Was this the problem? The CT scan showed the sacralization of L5, but it was difficult to get a sense for how tight the holes through which the nerves exit, the neural foramina, were. See Figures 2 and 3.     Figure 2: Coronal CT image through the L5 and S1 vertebral bodies. Is this the cause of the problem? It is very difficult to get an intuitive sense of what is going on with these flat image slices.     Figure 3: Image from Figure 2 with the neural foramina marked.   Seeking help through Embodi3D
The doctor contacted me through the Embodi3D website and asked if I could create a 3D model design and 3D print of his lumbar spine to help him and his team of spinal specialists understand his unique anatomy better. Of course, I was happy to help. The CT scan was of high quality and allowed me to extract the bones and metallic spinal fusion implants with little trouble. The individual nerves, however, were very difficult to see even on a high quality CT scan. I had to manually segment them one image at a time, which was a very tedious and time-consuming process. After fusing everything together, I had a very good digital model of the lumbar spine. I created some photorealistic 3D renders to illustrate the key findings.   Figures 4 and 5 show the very tight L5-S1 bony neural foramina. The inter-vertebral disc sits within the gap between the two vertebral bodies, and you can see how a lateral bulge from this disc would significantly pinch these exiting nerve roots.     Figure 4: Right L5 nerve root (yellow) exiting the tight neural foramen caused by the fused L5 and S1 lateral processes.     Figure 5: Left L5 nerve root (yellow) exiting the tight neural foramen caused by the fused L5 and S1 lateral processes.   Additionally, I showed that a bone screw that had been placed during the last surgery had partially exited the L4 vertebral body and was in very close proximity, and probably touching, the adjacent nerve root. Ouch! This can be seen in Figure 6. This may explain why the pain seem to get worse after the last surgery.     Figure 6: Transpedicular orthopedic screw which has partially exited the L4 vertebral body and is in very close proximity or in contact with the right L3 nerve root.   The Final 3D Printed Spine Model
The doctor wanted his spine 3D printed in transparent material, so I used a stereolithographic printer with transparent resin. I printed the spine in two separate parts that could be separated and fit together. When separated, the nerves exiting through the neural foramina can be inspected from inside the spinal canal, which gives an added degree of understanding.   Final pictures of the transparent 3D printed model are shown below.                         I just recently shipped the model to this doctor and don't yet know how his back problems will be resolved. With this 3D printed model in hand however, he will be able to have much more meaningful discussions with his spinal surgeons about the best way to definitively fix his low back problems. I hope that the 3D printed spine model will literally help to get this good doctor back on his feet again.

Dr. Mike

Dr. Mike

 

3D Printing Helps Treat Broken Bones

Broken bones can be immensely painful and debilitating. Broken bones account for over 6.8 million medical treatments each year at various hospitals, emergency rooms and doctor's offices across the United States. Most minor fractures can be treated using casts, braces and traction devices. Occasionally, surgeons also replace the broken or missing bone fragments using bone grafts. Grafts may be derived from the patient's own body (autografts) or from a donor (allografts).   Although autografts and allografts have been in use for decades, they have several disadvantages. It is often difficult to find a compatible bone fragment. Furthermore, these implants degenerate with time, and most patients require a replacement surgery after 10 or 15 years. This surgery can worsen pain and lead to other complications, especially in the elderly.   Three-dimensional Bone Grafts
To overcome some of these deficiencies, researchers at University of Toronto, under the supervision of Professor Bob Pilliar, began looking for special compounds that can be used to form artificial bone grafts and fragments. They discovered calcium polyphosphate that makes up approximately 70 percent of a natural bone. Mihaela Vlasea, a mechatronic engineer at University of Waterloo, then developed an indigenous 3D printer that uses ultraviolet rays and light-reactive binding agents to fuse the calcium polyphosphate molecules into bone fragments. The implant has a porous structure that allows the real tissue to grow over time. Subsequently, the implant is broken down naturally in the patient's body. Apart from treating fractures, this technology can also be used to produce replacement joints and cartilages for arthritis patients.   The porous nature of the 3-D printed grafts, however, makes them brittle and unmanageable at times. Researchers at Nottingham Trent University are working to further strengthen the bone implants by growing unique crystal structures within the bone scaffold at sub-zero temperatures. This technique may also reduce the time required to print the bone fragments.   Talus Bone Surgeries
Some healthcare professionals are already using 3D printing technology in patients. Dr. Mark Myerson, an orthopedic surgeon at Mercy Hospital, Baltimore, relies on 3D printing services offered by 4Web Medical to create customized ankle bones that can be implanted into the patient's feet to replace a broken ankle. He has used this technology to help patients with talus bone fractures, who tend to lose blood circulation in the area. Consequently, the bone dies and begins to crumble leading to a flat and painful ankle. 4Web Medical uses CT scans of the opposite (normal) foot to get the dimensions and the specific shape of the bone. It feeds this information into a computer and uses a 3D printer to produce a compatible implant. Dr. Myerson places these implants in the patient's ankles. The intervention has helped patients regain 50 to 75 percent of their ankle function.   The field of 3D bioprinting and medical 3D printing is still in its infancy. Scientists across the globe are investing significant amount of time, money and effort to develop more efficient and cost-effective techniques. Many products are undergoing clinical trials. Three-dimensional bones will soon be accessible to millions of patients suffering from bone fractures and bone defects.   Image Credit : mdmercy.com

mattjohnson

mattjohnson

 

Formlabs Form 2 3D Printer Review: A Great Buy for Medical 3D Printing

Hello Dr. Mike here and welcome to my review of the Form 2 3D printer by Formlabs. The Form 2 is Formlabs newest desktop stereolithography printer. It is a great asset for medical 3D printing with many user friendly features and an acceptable price.   My full review is included here in both video and text. You can download the splenic artery aneurysm file shown in the video. The Form 2 printer is available to purchase. The previous generation Form 1+ can be purchased on Amazon. However, the Form 2 represents a better value.   Stereolithography is a 3D printing method where a laser hardens liquid resin in a vat one layer at a time. This is different from fused deposition modeling (FDM) where plastic filament is heated and extruded through a nozzle to make the 3-D print. Stereolithography is capable of producing highly detailed 3-D prints with a layer thickness of 25 µm. This is four times finer than the 100 µm layer thickness for the latest MakerBot Replicator.     Form 2 Unboxing and Set Up
My Form 2 arrived in a series of boxes at my front door. I do a lot of 3-D printing so I ordered extra bill platforms and resin tanks. Resin cartridges came in their own separate box. As you can see I also ordered extra resin cartridges.   The Form 2 printer came in a large box that contained a quick start guide, another resin tank, build platform, and accessories. The printer itself was well secured in the box and had convenient pullout handles. Once the printer was in its final location next to my old form 1+ printers I had to remove the extensive tape used to secure the printer during shipping. A thin plastic protective film is present over the touchscreen. I tend to get my printers dirty so I left this in place.   Next I plugged in the printer, and it immediately started to initialize. The printer immediately gave me a warning that it was not level. I had the printer set up on the same table that my older Form 1+ printers were on but they do not have a leveling sensor, and apparently I have been printing with them leveled all this time.   Fortunately leveling the Form 2 printer is very easy. It has screw type legs that can be raised or lowered, much the same way that restaurant tables can be adjusted. A simple disc like leveling tool comes with the printer and can be used to adjust the legs easily. Adjust the legs until the leveling circle is within the bull's-eye shown on the main screen. This is a pretty cool feature. The printer is now ready to print.   You can connect to the printer over a USB cable, but I prefer Wi-Fi as my main computer is in a different room than the printer. To do this turn on Wi-Fi settings and select your network. The older Form 1+ printer resin came in bottles that you had to pour into the resin tank. The Form 2 printer comes with a printer cartridge that slides into the back of the printer. When you're resin tank is low the printer automatically fills the tank from the cartridge. This is quite handy especially with larger prints that may require the tank to otherwise be refilled in the middle of a print.   A new resin tank fits easily into the printer and snaps in place. Resin tanks are considered to be consumables and are thrown out after about 2 L of printing when the floor of the tank becomes foggy and starts to inhibit the laser. Each resin tank comes with a wiper arm which snaps into place. This wiper arm is a new feature for the form to and can prevent cured resin from sticking to the bottom of the tank, a situation that in older printers could cause total print failure. With the new wiper arm this situation is much less likely to happen.
The new build platform slides and easily.   Inserting a resin cartridges a snap. There's a cap on the top of the resin cartridge that should be opened to allow resin to drain into the printer. At this point the printer should be ready to print. You can see that the display shows that a resin tank and cartridge have been inserted. Also the display indicates the internal temperature. During printing a heater will warm the internal temperature to the appropriate level to achieve best results.   This is the result of my first print, which is a hollow vascular model. This is my second print which is a section of lumbar spine printed in clear resin.   This is the new removal tool, which is used to remove the three printed model from the build platform. Form labs has recently released firmware update which makes removal of the parts much easier. The removal tool can slip under the edges and with gentle twisting will separate from the bill platform. This is a significant improvement over the older support structure. It is also an example of how form labs continues to improve its products even after sale through the use of software upgrades.   Once removed from the bill platform the support structures need to be removed. This can be done either before or after cleaning the part in an alcohol bath. The model will be covered in sticky resin so you need to wear disposable gloves and be able to clean the parts with alcohol, which requires decent ventilation. Using the flush cutters that come with the kit the base can be cut and the support structures can be gently worked off the model.   Here's an example of a splenic artery aneurysm model that I printed and clear. You can see that the quality of the print is excellent. If you would like to 3-D print this model yourself I have made it free for download at the link in the description below. It is available in both STL and Form labs Preform software format. This is an example of some of the parts that are produced with the Form 2 printer. As you can see they are a very high quality.   Purchase and material options, and other features
The Form 2 comes with many upgrades and improvements over its predecessor, the Form 1+. This includes: Larger build volume, 14.5 x 14.5 x 17.5 cm Heated tank slide peeled resin wiper dust protection automated resin system wireless connectivity
The cost of the Form 2 printer is $3499, which includes the printer, resin tank, build platform, finishing kit, and one liter of resin of your choice. The printer comes with a one-year warranty.  
Standard resins are available in black, gray, white, and clear. Functional resins include flexible, castable, and tough. A biocompatible resin is available for dental purposes.   Form 2 For Medical 3D Printing Review Conclusion
The Form 2 is an outstanding desktop stereolithography 3-D printer for the price. It produces very high quality parts. It is expensive for a consumer grade desktop printer but is significantly cheaper than other printers used for medical purposes. The free Preform software makes setting up a print easy. Cons of the printer are it is messy, requiring gloves and isopropyl alcohol to clean the sticky resin from the parts. This can be a problem in a poorly ventilated office environment. Also the build volume, while larger than its predecessor, is still smaller than many FDM printers.
Overall the form two is an outstanding value and I recommend it highly particularly for medical 3-D printing. Thank you very much for watching if you like this video subscribe below and happy 3-D printing.

Dr. Mike

Dr. Mike

 

Medical 3D Printing for Skull Surgery

A company in Brazil called Artis Tecnologia has developed medical 3D printing technologies to aid in skull resection surgery. They demonstrated their techniques on a volunteer patient who received surgery for free at the university hospital of the Federal University of São Paulo (UNIFESP). They published an article about it two weeks ago in the International Journal of Computer Assisted Radiology and Surgery.   Their technologies allow the removal of a skull tumor and the implantation of a prosthesis in a single surgery. The company works with the doctors to plan the surgery and make the mold for the prosthesis. In this case the company donated the mold and the surgical navigator for the computer assisted surgery (CAS).  
Planning of the prosthesis  Surgical planning
First, the doctors take a CT scan of the patient, following a specific protocol so that it is precise enough to make the personalized mold. The scans are imported into the company’s EximiusMed software and which is compatible with the surgical navigator. The company is responsible for deciding on the surgery margin, and providing an image of the prosthesis, which is approved by the surgeon. The planning and production of the mold takes four days.   Mold production
The personalized mold is made with Magics software from Materialise, a company from Belgium. They make the mold for the prosthesis as well as a model of the bone fault, with submillimeter precision, using a 3D printer from 3D Systems, which uses layer-by-layer manufacturing in layers 0.16 inches thick. It is made from a plaster-like material, and finished with an insulator on the inside and scratch proof finish on the outside. Then, the mold and bone fault are packed in blister packaging, sealed with Tyvek, and sterilized by ethylene oxide, before shipping.   Images of the mold  Making the prosthesis
The prosthesis, made from PMMA during surgery, is created using a hand press as shown in the video.     The PMMA in plastic phase undergoes a slight contraction, and using 20% extra PMMA and a press, ensures the correct size for the prosthesis. The extra material drains out of the mold and can be easily removed from the prosthesis. The mold also absorbs heat from the exothermic reaction. It is pressed until polymerization is complete which takes ten to twenty minutes. Finally the prosthesis is washed generously with saline solution.   Placing the prosthesis on the skull fault  The surgeon decides how to perforate and attach the prosthesis, in this case with titanium clips
The clips are used to stabilize the prosthesis but not hold it in place. The prosthesis should overlap the edges of the skull fault as shown in the figure so it does not slip into the cranial cavity.     Images after surgery
 

How to Create a Blog on Embodi3D

About Blogs on Embodi3D
Select members of the Embodi3D community may be given the ability to create a blog and publish blog articles on the Embodi3D website. Blogging for new member is turned off by default as a spam reduction measure. Longtime members who have reliably contributed to the Embodi3D community through discussions in the forums, comments, or file sharing can ask to have blogging enabled on their accounts. Blog articles are featured on the Embodi3D.com homepage and are promoted using the Embodi3D social media accounts (Twitter, Facebook, Google+, LinkedIn, etc) and may provide significant exposure for the blogger.   Please DO:
1) Share your biomedical 3D printing work
2) Share you insights on current biomedical 3D printing topics and news
3) Help others with tutorials and shared 3D printable files   Please DON'T:
1) Post spam
2) Use the blog to promote outside commercial interests
3) Post hateful or disrespectful content, or use bad language.   To request blogging on your account, send a message to embodi3d via the Messenger in the top navigation bar.
Step 1: Start Creating your Blog
Once blogging is enabled on your account, you can create a blog. From the Blogs tab, click on the Manage Blogs button.     Step 2: From the Manage Blogs page, click "Create a Blog" Button     Step 3: Agree to the terms for having a blog
Basically this just says you won't use your blog for evil purposes.   Step 4: Configure the basics of your blog
Enter your blog name and description. Under Blog type, select "Local Blog." Embodi3D does not support external blogs.   Step 5: Set up the detailed parameters of your blog.
The default settings are fine more most people. Click "Save" when you are done   Step 6: Create your first blog post
There are two ways you can create a blog entry.
Method 1: From the Manage Blogs page clicking on Options and select Post New Entry, as shown below.
Method 2: From the Blogs section, click on the Add Entry button.       Once you have started writing a post you will need to know how to create links, add images and add Youtube videos.   Instructions for Creating Links
To get a link, first, using your cursor highlight the text within the article, then in the editor tool bar click the chain icon with a + on it. This will then prompt you for the web page link. In the URL field enter the web site address. For example, http://yahoo.com. then click OK.   Working with images
Each article needs an entry image. Entry Image is located above the editor tool bar where it says "Entry Image". Click Browse... and then find the image on your local computer.   For other images you will need to do a 2 step process.
1) First you will need to click on "Create New Gallery Album" which is located just under "Entry Image" . In this album put the images you want to include in the article.
2) Then when you get to a place in the article where you need an image click on "My Media" in the editor. Then select Gallery Images and select the previously uploaded images you put in this gallery.   Inserting Youtube Videos
The blogging editor only supports Youtube videos. To get a video to show and play within the blog post it requires just a link. When you find a video you like on Youtube click on Share instead of Embed. The Youtube link will look something like this: 'https://youtu.be/c3LgY0W5QSo   Copy the Youtube link and then paste it into your blog post here on emobodi3d.com. It usually works best if there is one line space above and one line space below the Youtube link. If the link is pasted with text surrounding it the link may not be recognized as a video.   That's it! Congratulations and welcome as an Embodi3D blogger! 

embodi3d

embodi3d

 

3D Bioprinting to Help Manage Gum Disease

Three-dimensional medical printing and bioprinting technologies are offering innovative solutions to dentists, orthodontists and other professionals treating complex gum diseases and related oral health problems. These treatments may benefit a significant portion of the 67.4 million American adults that suffer from such conditions.   Gum disease, also known as periodontitis, is characterized by swollen and bleeding gums, persistent bad breath, and loose teeth. If untreated, the condition can lead to serious complications including tooth loss. Many patients with gum diseases may require bone or tissue grafting. Traditionally, bone grafting involves implanting natural or synthetic bone fragments into the affected gums and allowing them to grow in a controlled manner to replace the lost teeth. Patients with damaged gums may require soft tissue grafting. During the process, a dentist will remove tissues from another part of the mouth and place them in the gums to treat them.   Bioprinting Bones and Gums
While such treatments may be effective, the challenge lies in finding compatible bone and tissue fragments. Additionally, the transplanted parts may get reabsorbed without producing the desired results. Researchers at Griffith University's Menzies Health Institute in Queensland, Australia, have created an novel solution by regenerating gum and bone tissues using 3-D bioprinters. They have trialed these components in animal models, such as rats, sheep and pigs, and are now focusing on clinical trails in humans. The technology may soon be available for commercial use.   As part of the study, the Australian researchers scanned gums and oral cavities of animals and used the images to obtain specific dimensions of the missing parts. They created computer-aided designs and relied on a 3-D bioprinter to create the models. Cells, extra-cellular matrix and other components of the targeted tissue were fed into the bioprinter, which was maintained at an optimal temperatures for tissue development.   The Benefits of BioPrinting
The researchers at Griffith's university have created scaffolds with bone and ligament compartments, and the technology has allowed them to recreate the entire architecture of the missing tissue with unprecedented accuracy. The 3-D printed tissue fragment can be customized according to the patient's specific needs. The researchers believe that this technology will eliminate the need for compatible bone and tissue grafts from the patient's own body. As a result, the surgical intervention will be easy to perform, less invasive, and cost-effective.     The bioprinting industry is evolving at a rapid pace. Researchers from other fields of medicine are also benefiting from this technology. It is only a matter of time before these printers become accessible to millions of patients with gum diseases and other oral conditions.

mattjohnson

mattjohnson

 

How to Upload and Share 3D Printable Files on Embodi3D

If you have a 3D printable file you would like to share with the Embodi3D community the process is very easy.   1) First, get your files ready. STL files are best and have good compatibility with most printers. Make sure your files are of good quality as Embodi3D's file library contains high quality files. If you think you files may have errors in them, you can check them using the Inspector function in MeshMixer. Be sure to compress your files if possible using a compression program like WinZip.   2) Take photographs or screenshots of your model, and have the image files ready to upload.   3) Now we are ready to upload. From anywhere in the Embodi3D site, click on the Marketplace nav menu. Make sure you are logged into your member account.
  4) Click the Upload File button in yellow.
  5) Select a category that most appropriately describes your file.
  6) Upload you files. Click on the "Click to Upload Files" button and navigate to the folder that contains the files you want to upload. Please compress your files using a file format like ZIP beforehand to make downloading easier for users. Uploads are limited to 30 MB in size, so compressing large STL files is important. You can upload a file as large as 100 MB if compression is used.
  7) Upload pictures or screenshots. Click the button and navigate to the folder that contains pictures of your model.
  8) Add details about your files. Put in a descriptive title. This is very important to attract people to your file page. Type in descriptive file tags to help search engines find your files. In the Description section, describe your model. You can even embed youtube links. To include media that you have uploaded to your Gallery click the My Media button. Choose whether you want the file to be free or paid. If you want the file to be a paid file (i.e. downloadable for a fee), see the selling page for more information on how to sell your files. Finally, choose a license type. Free files are distributed with Creative Commons licenses. Choose the one that you like the the best and click "Add Submission."     9) View your newly shared file! Thanks a bunch! By sharing your file you are helping other Embodi3D members with research, education, and a variety of other worthy causes.     If you would like to download the splenic artery aneurysm file shown in this tutorial, you can do so here.

Dr. Mike

Dr. Mike

 

Bioprinting Helps Create Transplantable Cartilages, Muscles and Bones

Organ transplantations and surgical reconstructions using autografts and allografts have always been challenging. Apart from the complexity of the procedure, healthcare professionals also have difficulty finding compatible donors. Autografts derived from one part of the body may not fit in completely at the new location causing instability and discomfort. As per the U.S. Department of Health and Human Services, about 22 people die each day due to a shortage of transplantable organs. Creating more awareness about organ donation is only part of the solution. Researchers have to look for other alternatives, and this is where technologies such as three-dimensional medical printing and bioprinting are making an impact.   Integrated Tissue-Organ Printing System (ITOP)
Millions of dollars are being invested to develop technologies that will help healthcare professionals print muscles, bones and cartilages using a printer and transplant them directly into patients. The ITOP system is a big step in that direction. It was developed by researchers at Wake Forest Institute for Regenerative Medicine. They used a special biodegradable plastic material to form the tissue shape, a water-based gel to contain the cells, and a temporary outer structure to maintain shape during the actual printing process. The scientists extracted a small part of tissue from the human body and allowed its cells to replicate in vitro before placing them in the bioprinter to generate bigger structures.   Unlike other 3-D printers, the ITOP system can print large tissues with an internal latticework of valleys that allows the flow nutrients and fluids. As a result, the tissue can survive for months in a nutrient medium prior to implantation. Researchers have used this technology to develop mandible and calvarial bones, cartilages and skeletal muscles. The goal is to create more complex replacement tissues and organs to offset the shortage of transplantable body parts.   Polylaprocaptone Bone Scaffolds
Researchers at John Hopkins are also developing 3-D printable bone scaffolds that can be placed in the human body. Their ingredients include a biodegradable polyester, known as Polylaprocaptone, and pulverized natural bone material. Polylaprocaptone has already been approved by the Food and Drug Administration (FDA) for other clinical applications. Researchers combined it with natural bone powder and special nutritional broth for cell development. The cells were added to a 3-D printer to generate bone scaffolds, which have been successfully implanted into animal models. Researchers at John Hopkins are now looking for the perfect ratio of Polylaprocaptone and bone powder that will produce consistent results. They will subsequently test their scaffolds in humans as well.   More studies are being done as we speak. Many surgeons have also started using 3-D printed tissues and bones to help their patients. In the next few years, this technology will become more accessible, affordable and effective and may change medicine forever.   Sources:
Photo Credit: Wake Forest Institute for Regenerative Medicine
Scientists 3D Print Transplantable Human Bone

mattjohnson

mattjohnson

 

Upcoming SME conference “Building Evidence for Medical 3D Printing Applications in Medicine” will be forum to discuss future of medical 3D printing

SME is holding an inaugural conference in about a week and a half, titled “Building Evidence for 3D Printing Applications in Medicine.” It’s sponsored by Materialize, a company that develops software for 3D printing and produces 3D-printed projects for researchers, clinicians, and consumers.   This is a crucial topic for doctors, patients, and the medical 3D printing industry. 3D printing will not be widely accepted in the clinic without compelling, systematic evidence that it is better than existing technologies and improves outcomes for patients. This type of evidence is also needed to gain reimbursement approval from insurance companies.   According to a blog post on the Materialize website for hospitals, the goal of the conference is to “work on a common set of guidelines regarding methodologies and assessment methods” for gathering clinical evidence of outcomes of the use of 3D printing in medicine.   Because each device manufactured by 3D printing is different, and the planning stage has a great impact on the outcome, the problem of developing standardized guidelines for collecting clinical evidence is challenging. As we’ve seen here at Embodi3D.com, the promise of 3D printing to help a great number of patients makes this problem worth pursuing.   One of the speakers in the following video, Andy Christensen, a business strategist for medical devices, 3D printing, and medical imaging, gets into the specifics of what types of evidence will be needed, “In medicine, the evidence 3D printing technologies should focus on gathering, will include things like overall patient outcomes, the invasiveness of the procedure, the total cost of the procedure, and things like revision rates for surgeries or other procedures. Now, while some of these are fairly easy, some of these may be fairly difficult to gather, and I think that’s a good reason a collaborative effort to gather information will be best.” Developing a collaborative effort to gather information is the goal of the conference.     Over two days, the conference will feature the clinical, engineering, and economic perspectives on the major thrusts of medical 3D printing: 3D printed anatomical models, 3D printed instruments and surgical guides, and 3D printed patient-specific implants. There will be many opportunities for discussion. Representatives from government agencies, the FDA and NIH, will join industry and clinical professionals to share their thoughts.   This initiative is part of the SME Medical Manufacturing Innovations Program (MMI) and the group will organize ongoing discussions online.   The conference will be co-located with RAPID, the annual SME 3D-printing conference, so that people can conveniently attend both. RAPID will of course also have many sessions on 3D printing for medical applications.   There’s still time to register to attend the RAPID conference held at the Orange County Convention Center in Orlando, Florida, on May 16-19. The “Building Evidence for 3D Printing Applications in Medicine” conference was only open to supporters and people significantly involved in 3D printing with relevant perspectives, through an application process. Embodi3D.com will continue to follow the outcomes of this highly relevant conference.
 

3D Bioprinted Ankles to Help Relieve Arthritic Pain

Imagine an orthopedic surgeon printing customized ankle bones with a printer and implanting them into patients to help them walk again. Consider a surgeon printing reconstructive wedges for an ankle surgery in his office and using them to replace staples, screws and plates. While these scenarios may seem like science fiction, advances in 3-dimensional medical printing are turning them into reality.   The human ankle is made up of 26 bones, 33 joints and almost 100 muscles. Together, these components bear a significant portion of the body weight and are exposed to a lot of wear and tear. Ankle problems, such as arthritis, can be immensely painful and debilitating. The condition impacts about 1 – 4 percent of the population, as per an article published in the 2010 edition of the journal Current Opinion in Rheumatology. Conservative treatments include medications, physical therapy and devices. If these treatments fail, the patient may require surgical interventions such as arthroscopic debridement or arthrodesis.   Current Innovations
Arthrodesis involves the fusion of ankle bones using screws and plates. The patients may also require bone grafts occasionally, which can get cumbersome and painful. Zimmer Biomet, a prominent name in reconstructive orthopedic industry, has created an innovative solution with 3-dimensional bioprinting technology. The company's Unite3D Bridge Fixation System consists of an “osteoconductive matrix” of biocompatible materials that mimics the ankle bones accurately and gets absorbed into the patient's body immediately. Orthopedic surgeons Dr. Greg Pomeroy of New England Foot and Ankle Specialists and Dr. John Early from Texas Orthopaedic Associates developed this system using Zimmer Biomet's proprietary OsseoTi material. The implants are available in nine different sizes to meet the needs of the patient. They also come with single-use surgical instruments.   In 2014, Dr. Marvin Brown of San Antonio Orthopedic Group in Texas used a 3-dimensional printer to obtain components and appropriate instrument guides for an ankle replacement surgery. The surgeon combined a modular prosthetic called Inbone and the bioprinted components effectively to help a patient recover from severe arthritic pain and injury. After the surgical intervention, the patient was able to walk with minimal pain. The new ankle is expected to last for 10 years.   Image Source:
  The Potential of 3D Printing in Podiatry
Most experts agree that these examples only form the tip of the iceberg. Three-dimensional bioprinting has the potential to revolutionize the field of podiatry. Current technology allows scientists to print high quality human hyaline cartilage consistently, and studies have shown that these single-celled chondrocyte structures can help treat osteoarthritis routinely using joint replacement surgeries. Bioprinting can also help print autografts of the required size thereby, reducing the need for extracting tissues from donor sites.   Healthcare professionals and researchers are immensely hopeful of impact that 3-D bioprinting will have on ankle conditions. More research is being done to come up with effective solutions that are affordably priced as well. Soon, complications associated with ankle surgeries may be a thing of the past.   Source:
What 3D Bioprinting Technology Means For Podiatry

mattjohnson

mattjohnson

 

embodi3D May 2016 Newsletter

Welcome to the May 2016 embodi3D communication! In this letter we will highlight one member's contribution, showcase our new product catalog, and ask for your feedback. Let's get started!   Member Spotlight: Terrie Simmons-Ehrhardt Terrie Simmons-Ehrhardt, is a forensic anthropologist at Virginia Commonwealth University, who uses 3D printing to build a human osteology study collection. Her primary research is studying the relationship between the skull and the face for forensic facial approximation. She has written a great tutorial on using the Grayscale Model Maker module in 3D Slicer to create 3D printable anatomic models. In addition to the tutorial, she uploaded the resulting STL file to the embodi3D marketplace where other members can download it for free. This is a great example of what can be accomplished with free resources and ingenuity. Way to go Terrie! embodi3D's Vascular Model Product Catalog Did you know embodi3D produces 3D printed vascular training models for physician and medical professional training? Numerous medical device companies use these models to teach and demonstrate their devices under realistic circumstances. Hospitals and medical schools use them to teach residents, fellows and medical students how to perform vascular procedures.     We continue to develop new models and now have 9 venous and arterial models available. To handle the large volume of inquiries we have an online product catalog. Reply to this email with product questions. We Want Your Feedback We want to learn how we can help our members share their work. Please take our short poll. It takes less than 1 minute to complete.   At embodi3d.com we want to help members share their enthusiasm for biomedical 3D printing. One of the best ways to share is by uploading files to the marketplace. We have stocked the marketplace with files ready for 3D printing. However, there is an unlimited number of conditions which can be modeled. We can't think of all the possibilities.   This is where you come in. Many of our members have contributed files and this enriches the experience for everyone. We want to enable more members to share. We understand many members have questions, and want to learn how we can help you share your work. Please take our poll so we can continue improving your experience. Thanks for your feedback, it is greatly appreciated!   Thanks for your feedback, it is greatly appreciated! Wishing You Much Success!
The Embodi3D Team

embodi3d

embodi3d

 

Modeling Pubic Bones for 3D Printing Pt. 1: Grayscale Model Maker in Slicer

Here is a tutorial for the Grayscale Model Maker in the free program Slicer, specifically for modeling pubic bones since they are used in anthropology for age and sex estimation. The Grayscale Model Maker is very quick and easy!   And I can't stand the "flashing" in the Editor.   For this example, I am using a scan from TCIA, specifically from the CT Lymph Node collection.   Slicer Functions used: Load Data/Load DICOM Volume Rendering Crop Volume Grayscale Model Maker Save  
Load a DICOM directory or .nrrd file.   Hit Ok.
Make sure your volume loads into the red, yellow, and green views. Select Volume Rendering from the drop-down.       Select a bone preset, such as CT-AAA. Then click on the eye next to "Volume."   ...Give it a minute...
Use the centering button in the top left of the 3D window to center the volume if needed. Since we only want the pubic bones, we will use the ROI box and Crop Volume tools to isolate that area.       To crop the volume check the "Enable" box next to "Crop" and click on the eye next to "Display ROI" to open it. A box appears in all 4 windows. The spheres can be grabbed and dragged in any view to adjust the size of the box. The 3D view is pretty handy for this so you can rotate the model around to get the area you want.   The model itself doesn't have to be perfectly symmetrical because you can always edit it later. Once you like the ROI, we can crop the volume.   To crop the volume, go to the drop-down in the top toolbar, select "All Modules" and navigate to "Crop Volume."   Once the Crop Volume workspace opens, just hit the big Crop button and wait. You won't see a change in the 3D window, but you will see your slice views adjust to the cropped area. At this point, you can Save your subvolume that you worked so hard to isolate in case your software crashes! Select the Save button from the top left of the toolbar and select the .nrrd with "subvolume" in the file name to save.     Now we will use the All Modules dropdown to open the Grayscale Model Maker. If you want to clear the 3D window of the volume rendering and ROI box, you can just go back to Volume Rendering, uncheck the Enable box and close the eyes for the Volume and ROI.     When using the Grayscale Model Maker, the only tricky thing here is to select your "subvolume" from the "Input Volume" list, otherwise your original uncropped volume will be used.     Click on the "Output Geometry" box and select "Create a new Model as..." and type in a name for your model.   Now move down to "Grayscale Model Maker Parameters" in the workspace.
I like to enter the same name for my Output Geometry into the "Model Name" field.
Enter a threshold value: 200 works well for bone, but for lower density bone, you might need to adjust it down. Since the Grayscale Model Maker is so fast, I usually start with 200 and make additional models at lower values to see which works best for the current volume.
***Here is where I adjust settings for pubic bones in order to retain the irregular surfaces of the symphyseal faces.***The default values for the Smoothing and Decimate parameters work well for other bones, but for the pubic symphyses, they tend to smooth out all the relevant features, so I slide them both all the way down.
Then hit Apply and wait for the model to appear in the 3D window (it will be gray).     You can see from the image above that my model is gray, but still has the beige from the Volume Render on it since I didn't close the Volume Rendering.
If for some reason you don't see your model: 1) check your Input Volume to make sure your subvolume is selected, 2) click on that tiny centering button at the top left of your 3D window, or 3) go to the main dropdown and go to "Models." If the model actually generated, it will be there with the name you specified, but sometimes the eye will be closed so just open it to look at your model.
Now we an save your subvolume and model using the Save button in the top left of the main toolbar. You can uncheck all the other options and just save the subvolume .nrrd and adjust the file type of your model to .stl. Click on "Change Directory" to specify where you want to save your files and Save!     This model still needs some editing to be printable, so stay tuned for Pt. 2 where I will discuss functions in Meshlab and Meshmixer.   Thanks for reading and please comment if you have any issues with these steps!

tsehrhardt

tsehrhardt

 

3D Bioprinting Vessels for Tissue Engineering

Tissue engineering can't expand into three dimensions as long as cells can't access oxygen and nutrients via blood vessels. This remains a big challenge for the printable organ and tissue engineering communities.   Monica Moya and Elizabeth Wheeler, biomedical engineers at Laurence Livermore National Laboratory, are working on a way to solve this “plumbing problem,” as Moya puts it, using 3D bioprinting.   Moya has previously developed microfluidic devices to test the effect of mechanical cues on vessel growth, and published her work in the journal Lab on a Chip. Now she and Wheeler are collaborating on moving to a 3D printing platform. Lawrence Livermore National Laboratory published a blog post last month describing their recent work.   First, they had to make sure that the printing techniques were compatible with cell viability. They had to change out the extrusion and fluidic parts of a standard 3D-printer, to eliminate the high temperatures and shear forces that would kill the cells.   The bioink, a fluid with biological components, contains endothelial cells, fibrin, and fibroblast cells. The viscosity had to be finely controlled, so that it would remain liquid inside the printer, and gel once in contact with the bed, to print out the tissue support for the vessels.   To make tubular vessels, a mixture of alginate (a polysaccharide isolated from seaweed) and fibroblast cells, is printed from a coaxial needle (a needle within a needle) resulting in printed vessel structures, called biotubes. Finally, more tissue bio-ink is laid down, enveloping the biotubes. The biotubes are hardened by flowing calcium solution through the tubes. The tissue patch starts to grow its own vessels, but it looks like spaghetti, with no organization. The alginate and calcium tubes eventually dissolve, leaving the vessels formed by the cells. Future planned developments include directing the vessel formation with nutrient and mechanical cues.   The youtube video demonstrates the printing process:     The photo above shows Monica Moya holding a dish with several of these biotubes. She explained their reasoning, “If you take this approach of co-engineering with nature you allow biology to help create the finer resolution of the printed tissue. We’re leveraging the body’s ability for self-directed growth, and you end up with something that is more true to physiology. We can put the cells in an environment where they know, ‘I need to build blood vessels.’ With this technology we guide and orchestrate the biology.”   Moya and Wheeler did an AMA on Reddit back in December to discuss their work with interested members of the public.   They have made tissue patches the size of one square centimeter, the size of a fingernail. Future directions include larger tissue patches. Potential applications of this work include drug testing, toxicology studies, and implantable tissues.   Moya and Wheeler’s work is part of a larger project called iCHIP (in vitro Chip-based Human Investigational Platform) looking to create a “human on a chip” where different teams are working on making tissue models of the stomach, liver, heart, kidney, brain, blood–brain barrier, immune system, and lungs, also described in a blog post on the Lawrence Livermore National Laboratory website.   Photo credit: Lanie L. Rivera Lawrence Livermore National Laboratory
 

Innovation in 3D-printed Surgical Models for Brain Tumors

Brain tumors located at the base of the skull are some of the most challenging to treat, because of their proximity to the brain stem, as well as important nerves and blood vessels in the head and neck (Johns Hopkins). The brain stem maintains breathing and heartbeat, the basics of life. Tumors found here are known as “skull base tumors” based on their location, not the type of tumor.   A group of doctors at Toho University Omori Medical Center in Tokyo, Japan, hope to improve surgical models for skull base tumors.   3D printed models are often made from opaque materials such as plaster, which make it difficult to visualize the essential brain structures. The doctors’ idea was to develop a surgical model where the tumor was made from a mesh structure.   First they had to design the mesh. They made a series of objects with different spacing between the mesh and different mesh thickness. They made 20 trials of each structure, a total of 400 models. Once they decided which mesh provided the most transparency and structural integrity (they chose the one in the photo below), they proceeded to test the tumor models.   Image Credit: Acta Neurochirurgica  To make the all the models, the researchers used the Z Printer 450 from 3D systems which uses binder jetting, where layers of a plaster powder are fused with a binding agent to make the model. The models were then coated in paraffin wax to make them more durable.   Once they decided on which grid to use for the tumor models, models were made from brain scans taken of four patients between 2007 and 2014. The imaging used for each patient was CT angiography (CTA) for the skull, MRI for the tumor and brainstem, and 3D digital subtraction angiography (DSA) for the blood vessels.   Twelve neurosurgeons (the authors of the study) evaluated models based on the visibility of the various brain structures comparing a solid tumor, a mesh tumor, and no tumor. (see photo above)   They determined that they the mesh tumor structure enabled them to both visualize the deep brain structures, and also understand the spatial relationships between those structures and the tumor.   The method was limited by the physical vulnerability of the mesh and the difficulty of judging the surface of the mesh tumor compared to the solid tumor model. The authors expected improvements in 3D printing technology to enable thinner mesh as well as translucent material.   Kosuke Kono et al. published a paper describing their study online two weeks ago in Acta Neurochirurgica: The European Journal of Neurosurgery.
 

Cardiologists hope to predict heart attacks with the aid of imaging, computer models, and 3D-printing

Heart disease is the leading cause of death in the USA and other developed countries. Imagine the number of lives that could be saved if doctors could predict heart attacks before they happen.   Most heart attacks are caused by a buildup of cholesterol and triglycerides (called plaques) inside heart arteries that rupture, form blood clots, and block the artery.   But not all plaques rupture and not all plaque ruptures cause disease. An Australian team of medical doctors and mechanical engineers hopes to predict where plaques will form, which plaque sites will rupture, and which ruptured sites will cause heart attacks. With this knowledge cardiologists could place a stent to hold open the afflicted artery before the attack occurs.   As a river twists and branches, sediment builds up on some banks, and the water sweeps others bare. The same is true of arteries and plaque formation. And each individual has different arterial branches.   Knowing an individual’s heart artery structure will enable the design of individualized 3D-printed models to help plan surgery, and design perfectly fitted stents, which would aid in the current challenges of stent placement. Peter Barlis, the leader of the team, holds up a 3D printed artery in the leading image above.   Another member of the team, associate professor Andre McIsaac, said, “the long term outcome is dependent on how well our stents are put in, in fact how well they’re deployed and expanded and having the right size stent in the right spot in the correct coronary artery.”   Dr. Peter Barlis at the University of Melbourne and a team of researchers are working on predicting the sites of future heart attacks, by using state-of-the-art imaging techniques and computer models.   Images captured from inside a heart artery using Optical Coherence Tomography. Photo credit: University of Melbourne  The imaging technique, called optical coherence tomography (OCT), is a type of CT scan, except instead of x-rays it uses near-infra red light, at the edge of the visual spectrum. In the video below, you can see a red light on the camera. The light does not penetrate as deeply as x-rays do, so a wire-like camera is inserted into the heart via a vein. It can be performed at the same time as a routine angiogram. Barlis brought OCT imaging to Australia in 2009, and now it’s used in all major hospitals there. It was approved by the FDA for use in cardiology in the US in 2010.     But researchers can’t know if they actually prevented an attack or if it would not have happened in the first place.   They are attempting to connect arterial branch location, the types of mechanical stress on arterial walls, blood flow, and existing plaque to the risk of rupture. Barlis and a team of researchers published a review article in the European Heart Journal in February of this year about current computer modelling techniques to give other cardiologists insights into this growing field.   Press release at EurekAlert!
 

3D Printed Replica of Patient’s Brain Used to Plan a Complex Procedure

A neurosurgeon from Saskatoon in Canada has 3D printed a replica of a patient’s brain to help him plan a complex medical procedure.   Working with a team of engineers, Dr. Ivar Mendez created an accurate replica of the patient’s brain, which will allow him to practice surgery.   Dr. Mendez is the head of surgery at the University of Saskatchewan, and is already familiar with using advanced technologies to improve surgical results. He uses computers in the operating room, and has a medical engineer as part of his surgical team.   However, putting together a 3D brain was a more complicated task, but it would make it possible for him to practice working on some of the smallest components of a brain.   "You can imagine it as having a pea inside a sock or balloon," Mendez told CBC. "It is a complex system.”   What makes the model so valuable is that it’s an exact replica of the patient’s actual brain. If they have a tumor or other abnormality, Mendez and his team can create a replica that includes these unique features.

The patient in question was planned to undergo deep brain stimulation. Dr. Mendez needed to insert electrodes into the brain to help soothe overcharged neurons. He usually plans this kind of surgery using a computer model, but wasn’t successful in this case.  His idea was to position one electrode to affect two target neurons, but the computer model wasn’t capable of this kind of surgical planning. Human brains are particularly complex, which makes it difficult for computers to predict how the tissue will react to certain tools.   “I wanted a way to really, before I did a surgery, to know exactly how this was going to reach the brain and the targets I wanted,” Mendez told The Star Phoenix.   That’s why Mendez decided to team up with the school of engineering at U Saskatchewan, as well as radiology technicians and a neuropsychology specialist. The team worked together to make the MRI data understandable to the 3D printer.

The 3D model took 7 months of planning before a prototype was created. It was printed using a transparent material similar to rubber, that allows surgeons to see all the internal structures of the brain as well. Mendez said it also feels fairly similar to an actual human brain.  "I'm a neurosurgeon but I'm also interested in art. To me, this was an object of beauty,” he said.   Dr. Mendez believes the development of the technology will bring new opportunities for surgical practice.   "I envision that in the future we may be able to do procedures that are very difficult or impossible today," he said. "I feel that in the next 20, maybe 25 years, we will be able to print biological materials. We may be able to print organs."   Image Credits:
CBC
The Star Phoenix

cdmalcom

cdmalcom

 

embodi3D April 2016 Newsletter

Welcome to the first embodi3D.com newsletter.com! We will communicate upcoming events, new site features, noteworthy content and provide industry updates through this newsletter.   Embodi3d.com is a place for sharing, learning and growing as biomedical 3D printing enthusiasts. Tutorials, blog articles, forum posts and file sharing are just some of the ways we are building a medical 3D printing community.   Introducing the embodi3D.com Marketplace For well over a year now we have offered a File Vault filled with free files. Members have contributed many of these files and now we want to give members the opportunity to sell files as well. We are launching a marketplace where you can buy and sell files related to biomedical 3D printing. The File Vault is now called the Marketplace. Members can choose whether the files they upload are available for free or set a sales price. Feel free to price your files as you deem appropriate. We know a lot of work goes into making the files! Read this article for selling files and watch this video tutorial for buying files. This is a beta release and we encourage you to reply to this email with feedback.   We have updated our Terms of Use to reflect the new features offered through the marketplace. Please review the new Terms of Use on embodi3D.com. Your continued use of the site constitutes agreement with these terms.   The Most Advanced Vascular Training Models Embodi3D has created a line of super-accurate 3D printed vascular models for physician and medical professional advanced training. Created by a board-certified physician who performs vascular procedures daily, these models were created for maximum procedural realism while being more practical and less expensive than conventional animal labs or silicone tube models. Physician specialists who utilize these models include vascular surgeons, cardiologists, and radiologists.   Dr. Mike will be at the Society of Interventional Radiology meeting beginning tomorrow in Vancouver. He will demonstrate the use of these models in a variety of endovascular procedures. Participate in the embodi3D.com Community We invite you to participate in the embodi3d.com community. Did you know members are eligible to write blog articles? In addition to uploading files and posting in our forums, members can publish articles on our blog. If you are interested in blogging, simply reply to this email. Thanks for reading and let us know if there are any topics you would like us to cover in future newsletters.   Wishing You Much Success!
The Embodi3D Team

embodi3d

embodi3d

 

Advanced 3D Printed IVC Filter and Arterial Vascular Training Models

The Most Advanced Vascular Training Models for Physicians   Embodi3D has created a line of super-accurate 3D printed vascular models for physician and medical professional advanced training. Created by a board-certified physician who performs vascular procedures daily, these models were created for maximum procedural realism while being more practical and less expensive than conventional animal labs or silicone tube models. Physician specialists who utilize these models include vascular surgeons, cardiologists, and radiologists. Numerous medical device companies use these models to teach and demonstrate their devices under realistic circumstances. Hospitals and medical schools use them to teach residents, fellows and medical students how to perform vascular procedures.   To view our full product catalog with updated information please see the Vascular Training Models page. You will learn about the models shown on this page and many more.   If you are interested in these training models, please Contact us.   IVC Filter - Whole Body Venous Training Model The whole body venous medical training model includes all the major venous structures in the human body from the right jugular vein of the neck to the right and left common femoral veins at the level of the hips. The whole body venous model allows for the education and training in a variety of IVC filter related procedures. The model was created from a real CT scan so the vessel positions, diameters, and angles are all real. Entry points are present at the right jugular vein and brachiocephalic vein for upper body access, and the bilateral common femoral veins for lower body access. Attachments are present to make placement of a real vascular sheath easy.   The model can be used to teach or practice the following procedures: IVC filter placement, jugular or femoral approach Common iliac filter placement, jugular or femoral approach IVC filter retrieval Venous stenting IVC and iliac vein thrombectomy or thrombolysis Venous embolization Hepatic vein cannulation
The model can be used to illustrate specific devices for the procedures listed above and is used by medical device companies to demonstrate and teach the use of their products. The IVC model comes in a portable carrying case and is easily transportable. It assembles and disassembles in less than 20 seconds.    
Caption: An attendee of the Radiological Society of North America (RSNA) meeting deploying an IVC filter in the IVC filter training model. Models are commonly used at medical trade shows to allow attendees to quickly get hands-on experience with medical equipment.         If you are interested in the IVC Filter - whole body venous training model, please contact us.   Abdomen and Pelvis Arterial Embolization and Stenting Medical Model The abdomen and pelvis embolization and stenting model has detailed arterial anatomy generated from a real CT scan, so the exact vessel shapes, diameters, and angles are all real. Numerous detailed vessel branches are included for maximum realism and for practicing extremely fine catheterization. For example, the right, middle, and left hepatic arteries are included, which are only accessible after four levels of branching (Aorta -> Celiac artery -> Common hepatic artery -> Proper hepatic artery -> Right, middle, and left hepatic arteries). Vascular sheath attachment points are present at the right and left common femoral arteries, as they would be during a real procedure. This provides an unparalleled level of realism for training in an in vitro model. It is a revolutionary training tool for interventional radiologists, cardiologists, and vascular surgeons. It is commonly used at professional training sessions, trade shows and conventions, in-hospital training sessions, and at medical schools for teaching residents and fellows. Medical device companies use the model to demonstrate and teach the use of their microcatheter, wire, and embolization products to physicians.     This medical model can be used to teach or practice the following procedures: Aneurysm embolization Stent assisted embolization Balloon assisted embolization Splenic artery embolization Gastroduodenal artery embolization Yttrium-90 radioembolization mapping Yttrium-90 radioembolization treatment Hepatic chemoembolization Angiography for G.I. bleeding Renal artery angiography Renal artery stenting Pelvic angiography and embolization for trauma Internal iliac artery embolization Internal iliac artery stent-grafting Abdominal aorta stent-grafting  
Arteries Included: Abdominal aorta Common iliac arteries Internal and external iliac arteries Common femoral arteries Celiac artery and branches Splenic artery Left gastric artery Common hepatic artery, left, middle, and right hepatic arteries Gastroduodenal artery Superior mesenteric artery and branches Inferior mesenteric artery and branches Renal arteries
Aneurysms included: Splenic artery, proximal, 25 mm berry aneurysm, 10 mm neck Splenic artery, distal, 20 mm berry aneurysm, 7.5 mm neck Right renal, 10 mm berry aneurysm, 8 mm neck Left renal, inferior, 5 mm berry aneurysm, 3.5 mm neck Left iliac artery, fusiform aneurysm, 33 mm x 23 mm
Arterial Stenoses: Left renal, accessory branch, stenosis, 2mm  
The model assembles and disassembles in less than 20 seconds. It comes with its own durable and customized carrying case for safe and easy transport   Thank you for your interest in Embodi3D's advanced vascular training models. If you have any additional questions about our existing training models, or are interested in having us create a new training model for your special need, please contact us.

embodi3d

embodi3d

 

“Miracle Kitten” Becomes Next Prospective Patient for Custom 3D-Printed Implants

Cassidy, a tuxedo kitten with a white mustache and socks, lost his hind limbs from below the knee at birth. When he was found starving after nine weeks, his wounds infected with E. coli, the emergency vet recommended euthanasia. But Shelly Roche refused to give up on him. She runs the TinyKittens rescue operated out of Fort Langley, B.C., Canada, that specializes in lost causes. She nursed him back to health, with the Internet cheering him on.   This video shows Cassidy walking with a leash and harness to hold up his rear end, then getting a little wheelchair and finally running around and bounding off his rear leg stumps.   Cassidy as a young kitten trying his 3D printed wheelchair. Photo credit: CatChannel.com  Two local high school students made him a wheelchair using their school’s 3D printer. This was not the last time 3D printing would help Cassidy. Handicapped Pets Canada also provided one that he used up until recently. Now that Cassidy has outgrown his wheelchairs, he gets around riding Roche’s Roomba.
  But the Roomba is only a temporary solution. Cassidy is being fitted for prosthetic leg extensions. Last week, in the first step toward receiving prosthetics, Cassidy got Botox injections to relax the muscles of his rear legs, for ongoing physical therapy.   Roche said of Cassidy’s prosthetics, "I'm not sure if they use titanium or carbon fiber. I'm not sure what the end-point will be. I tell people he's going to get fancy new bionic legs."   That will be up to Dr. Denis Marcellin-Little and the team at North Carolina State University working on Cassidy’s prosthetics. Marcellin-Little is an expert in custom prosthetics and physical therapy. Like a real-life Dr. House for dogs and cats, Dr. Marcellin-Little gets the most challenging cases, where existing methods cannot provide treatment, so he and an international team of collaborators develop new ones.   The process for building a custom implant starts with a CT scan. Then, 3D-printed models of bones may be made. Marcellin-Little has over a decade-long collaboration with Dr. Ola Harrysson of the department of Industrial Systems and Engineering building implants. Marcellin-Little and Harrysson have invented a technique called osseointegration, where a titanium implant gets attached directly to bone via a honeycombed surface the bone grows to fill. The implant itself is made using a type of metal 3D printing called electron beam melting (EBM) where titanium powder is melted in successive layers to make the object.   Several news articles have mentioned the cost of Cassidy’s care. $10,000 has been spent on Cassidy already. The implant procedures can cost up to $20,000 per leg.   The procedure does not only benefit a single animal. Marcellin-Little talks of translating the technique to human patients “All the progress we make in free-form fabrication very quickly gets translated to human prosthetic research. Free-form transdermal osseointegration will cross over at some point to human patients.”
 

Supervet Discusses the Ethics of 3D Printing Technology for Veterinary Medicine

Professor Noel Fitzpatrick is one of the most prominent doctors of veterinary medicine in the UK. Featured on the show The Supervet on Channel 4, Fitzpatrick performs live-saving operations for people’s beloved pets, often making use of advanced technologies like 3D printing in his procedures.   Despite his skills, Fitzpatrick says whether or not to keep animals alive is a moral decision, more than a scientific assessment. He says that 3D printing and other technological advancements have made it so he can cure nearly any pet’s ailment, but that doesn’t necessarily mean he should.   Fitzpatrick told recently that he and other vets have an obligation to focus on the value their services bring to the pet’s future quality of life before deciding to subject them to invasive surgeries.   His veterinary practice located in Surrey has been among the first to use advanced medical techniques such as creating bionic legs for people’s pets.   He also said that no matter how much money he might receive by performing complex operations, he takes the time to consider which outcome will be best for the animal before agreeing to do it.

He said, “The bottom line now is that anything is possible, if you have a blood and nerve supply.”  “That means that we now have a line in the sand: not what is ‘possible’ but what is ‘right.’ In the past it was just the case of if it wasn't possible, you'd move to euthanasia.”   Dr. Fitzpatrick said ever since he began using 3D printed joints with living tissue as part of his procedures, he spends every day walking a moral tightrope.   At the same time, he thinks animals are very deserving of the most modern medical technologies, given the role they played in drug and medical testing for human medicine historically.   “They've given us all their lives for research, quite simply it's time to give something back.”   The Supervet is returning to TV with a new series featuring Dr. Fitzpatrick’s treatment of Jersey, the first three-legged cat to ever have a hip replacement.   Jersey lost a leg after being hit by a car. Fitzpatrick needed to create a new hip that moved in a unique way so she could balance on three legs alone.   He said, “It was a sweet cat. She had a slipping kneecap and really severe hip arthritis. Most cats can manage three legs but this one couldn’t."

Jersey’s medications weren’t helping her, which is why her owner wanted to pursue a compete hip replacement.  Dr. Fitzpatrick said, “It would have been easy to put her to sleep. Was that the right choice? The other options for pain control were suboptimal. But it worked.”   Jersey’s story is just one of many unique cases featured on The Supervet, often involving novel medical solutions with the help of 3D printing.   Image Credits: DailyMail, Supervet

cdmalcom

cdmalcom

×