Jump to content
  • entries
    29
  • comment
    1
  • views
    15,976

Increasing Role of 3D Printing in Cancer Screening


mattjohnson

1,024 views

large.apple_cancer_screening.jpg.be47b4aIn spite of extensive research, the medical fraternity has not reached a consensus on what causes cancer and how it should be treated. Nonetheless, almost everyone agrees that early and accurate diagnosis is crucial for successful recovery. In fact, early detection can lead to a 70 percent decline in cervical cancer mortality, as per the Canary Foundation. Early diagnoses of colon cancer can increase the patient’s five-year survival rate from 11 percent to 91 percent. Almost 100 percent of the patients with breast and prostate cancer survive for more than five years when the condition is revealed at an early stage. Consequently, millions of dollars are being spent on developing and improving diagnostic techniques such as MRI scans, CT scans, PAP smears and mammograms. While these procedures have been immensely successful, they can be very expensive and may not be accessible to everyone. Some screening methods are associated with bleeding and other unwanted side effects. They can also lead to false-positive and false-negative reactions. Surprisingly, three-dimensional (3D) medical printing and bioprinting technology is paving the way for newer cancer screening techniques that are more sensitive, specific and cost effective. The technology allows the user to deposit desired materials on a substrate in a specific pattern to create medical devices, implants and prosthetics as per the needs of the patient.

Simplified Blood Testing

Miriam, a 3D printed blood testing device from Miroculus, uses proprietary microRNA detection technology and digital microfluids to identify early stage cancer at the molecular level. The company is focusing on gastric cancer at this time and has collaborated with the National Institute of Health to conduct clinical trials for the diagnostic device. The goal is to provide doctors with a simple tool to identify patients who require additional testing. This can help save thousands of dollars in the long run and make cancer screening available to patients in the poorest parts of the world.

 

Printing the Ducts

Another major challenge is to identify malignant tumors accurately. Doctors estimate that about 20 to 50 percent of breast tumors become invasive. However, the oncologists cannot determine which ones would worsen with time and hence, end up treating every patient with expensive and harmful medications. Researchers at University of Pittsburgh Medical Center and Carnegie Mellon University are relying on the 3D printing technology to print the duct between the mammary gland and the nipple. They hope to use the duct to grow breast tumors artificially in the lab and detect biomarkers that identify potentially malignant tumors.

Mobile Devices

Israeli startup MobileODT has developed a 3D printed mobile accessory known as the Mobile Coloscope. The doctors can attach the accessory to any smartphone and use it to click magnified images of the cervix. The images can help diagnose cervical cancer at an early stage. A disproportionately large number of women die of cervical cancer in the developing world due to inaccurate and delayed diagnosis. MobileODT hopes their device will help physicians overcome this hurdle. The success of these prototypes is inspiring other scientists to find novel cancer screening methods using 3D printing. Several projects have received millions of dollars in grant money with both healthcare professionals and scientists betting heavily on this technology. Soon, 3D printed devices may change the way physicians diagnose and treat cancer, and thereby help lower mortality rates significantly.

0 Comments


Recommended Comments

There are no comments to display.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...