Jump to content

Blogs

Featured Entries

  • Dr. Mike

    Easily Create 3D Printable Muscle and Skin STL Files from Medical CT Scans

    By Dr. Mike

    In this tutorial we will learn how to use the free medical imaging conversion service on embodi3D.com to create detailed anatomic muscle and skin 3D printable models in STL file format from medical CT scans. Muscle models show the detailed musculature by subtracting away the skin and fat. Even when created from a scan of an obese person, the model looks like it comes from a bodybuilder, Figure 1A. Skin models show an exact replica of the skin surface. The finest details are captured, including wrinkles and veins underneath the skin. Hair however is not captured in a CT scan and thus the model does not have any hair, Figure 1B. Figure 1A (left): A muscle 3D printable model. Figure 1B (right): A skin 3D printable model   These models can be used for a variety of purposes such as medical and scientific education and research. Additionally, the skin models can be used to re-create a person's likeness in 3D from a medical scan. If you have had a CT scan of the head, you can create a lifelike replica of your head. You can create replicas of your friends, family, or even pets if they have had a medical CT scan. Alternatively, if you have a loved one who passed away but had a CT scan prior to death, you can use the scan to re-create an exact replica of their face. Even scans that are years old can be used for this purpose. Some people may consider this to be a little creepy, so if you are considering doing this think carefully first.   Before proceeding please register for an embodi3D.com account if you haven't already. You will need an account to use the service. It is highly recommended that you download the associated file pack for this tutorial so that you can follow along with the exact same files that are used in this tutorial.   >> DOWNLOAD THE FREE FILE PACK BY CLICKING HERE <<   If you are interested in learning how to use the free embodi3D.com service, see my prior tutorials on creating bone models, processing multiple models simultaneously, and sharing and selling your models on the embodi3D.com website.       If you are interested in converting your own CT scan or that of a friend or family member, you can go to the radiology department of the hospital or clinic that did the scan and ask for the scan to be put on a CD or DVD for you. Figure 2 shows the radiology department at my hospital, called Image Management, and the CDs that they give out. Most radiology departments will have you sign a written release and give you a CD or DVD for free or with a small processing fee. If you are a doctor or other healthcare provider and want to 3D print a model for a patient, the radiology department can also help you. There are multiple online repositories of anonymized CT scans for research that are also available. If you have downloaded the file pack for this tutorial, example CT scans are included   Figure 2A, the Image Management (radiology) department at my hospital, where you can pick up a DVD of your CT scan as shown in Figure 2B (right). My hospital does this for free, but some may charge a trivial fee.   PART 1: Creating a Muscle STL model from NRRD File   Before we begin please bear in mind that this process only works for CT scan images. It will not work for MRI images. Before proceeding please check that the scan you wish to convert is a CT (CAT) scan!   Step 1: Convert Your CT scan to an Anonymized NRRD File with 3D Slicer Open 3D Slicer. If you don't have the software program you can download it for free from slicer.org. Once Slicer has opened, take the folder from the download pack that is called STS_004. This folder contains anonymized DICOM images from a CT scan of the legs of a 24-year-old woman who had a muscle tumor. Drag and drop the entire folder onto the Slicer window, as shown in Figure 3. Slicer will ask you if you want to load the images into the DICOM database. Click OK. Slicer will also ask you if it should copy the images into the database, click Copy. Slicer will take about one minute to load the scanned. Figure 3: Drag-and-drop the STS_004 DICOM folder from the file pack onto the Slicer window   Next, load the scan into the active wor king area in slicer. If the DICOM browser is not open, click on the Show DICOM browser button, as shown in Figure 4. Click on the STS_004 patient and series, and click the Load button, as shown in Figure 4. The leg CT scan will now load into the active seen within Slicer, as shown in Figure 5.   Figure 4: Open the DICOM browser and load the study into the active seen   Figure 5: The leg CT scan is shown in the active seen   Step 2: Trim the Scan so that only the Right Thigh is included. Click on the Volume Rendering module from the Modules drop-down menu as shown in Figure 6. Turn on volume rendering by clicking on the eyeball button, as shown in Figure 7. Then, center the model in the 3D pane by clicking on the crosshairs button, Figure 7. If you don't have the same window layout as shown in Figure 7, you can correct this by clicking on the Four-Up window layout from the window layout drop-down menu, as shown in Figure 8.   Figure 6: Turn on the volume rendering module   Figure 7: Center the rendered volume.   Figure 8: Make sure you are in the Four-Up window layout   Next we are going to crop the volume so that we exclude everything other than the right knee and thigh. From the modules menu, select All Modules, Crop Volume, as shown in Figure 9. Turn on ROI visibility by clicking on the eyeball button, as shown in Figure 10. Then, move the region of interest box so that it only encapsulates the right thigh, as shown in Figure 10. You can adjust the size of the box by grabbing on the colored circular handles and moving the sides of the box as needed.   Figure 9: The Crop Volume module.   Figure 10: Turning on and adjusting the crop volume ROI (Region Of Interest) Once the crop volume ROI is adjusted to the area that you want, perform the crop by clicking on the Crop button, Figure 11.   Figure 11: the Crop button.   The new, smaller volume that encompasses the right fight and knee has been assigned a cryptic name. The entire scan had a name of "2: CT IMAGES – RESEARCH," and the new thigh volume has a name "2: CT IMAGES-RESEARCH-subvolume-scale_1." That's a mouthful and I want to rename it to something more descriptive. I'm going to select the Volumes module, and then select the "2: CT IMAGES-RESEARCH-subvolume-scale_1" from the Active Volume drop-down menu. Then, from the same drop-down menu I'm going to select "Rename Current Volume". Type in whatever name you want. In this case I'm choosing "right thigh."   Figure 12: Renaming the newly cropped volume.   Step 3: Save the right thigh volume as an anonymized NRRD file.   Click on the Save button in the upper left-hand corner. The save window is then shown. All the checkboxes on the left except for the one that corresponds to the right by. Make sure the file format for this line says NRRD (.nrrd). Make sure you specify the proper directory you want the file to be saved as. When you are satisfied click on save. This is demonstrated in Figure 13. In the specified directory you should see a called right thigh.nrrd. Figure 13: The save file options.   Step 4: Upload the NRRD file to embodi3D.com   Make sure you are logged into your embodi3D.com account. Click on Imag3D from the nav bar, Launch App. Then drag-and-drop your NRRD file onto the upload pain, as shown in Figure 14. Figure 14: Uploading the NRRD file to embodi3D.com.   While the file is uploading, fill in the required fields, including the name of the uploaded file, a brief description, file privacy, and license type. Except the terms of use. next, turn on Imag3D processing.  Under operation, select "CT NRRD to Muscle STL."  Leave the threshold value unchanged. Under quality, select medium or high. Specify your privacy preference for your output STL file. If you are going to share this file, you can choose to share it for free or sell it. Please see my separate tutorial on how to share and sell your files on the embodi3D.com website for additional details. When you're happy with your choices, save the file, as shown in Figure 15: Figure 15: File processing options.   Step 5: Download your new STL file after processing is completed.   In about 5 to 15 minutes you should receive an email that says your file has finished processing and is ready to download. Follow the link in the email or access the new file via your profile on the embodi3D.com website. Your newly created STL file should have several rendered thumbnails associated with it on its download page. If you want to download the file click on the Download button, as shown in Figure 16. Figure 16: the download page for your new muscle STL file   I opened the file in AutoDesk MeshMixer to have another look at it, and it looks terrific, as shown in Figure 17. This file is ready to 3D print! Figure 17: The final 3D printable muscle model. PART 2: Creating a Skin Model STL File Ready for 3D Printing Creating a skin model is essentially identical to creating the muscle model, except instead of choosing the CT NRRD to Muscle STL on the embodi3D.com service, we choose CT NRRD to Skin STL. Step 1: Load DICOM image set into Slicer   Launch Slicer. From the tutorial file pack drag and drop the MANIX folder onto the Slicer window to load this head and neck CT scan data set. This is shown in Figure 18.   Figure 18: Loading the head and neck CT scan into Slicer. It may take a minute or two to load. From the DICOM browser, click on the ANGIO CT series as shown in Figure 19.   Figure 19: Loading the ANGIO CT series from the MANIX data set   Step 2: Skip the trimming and crop volume operations   In this case we don't need to trim and crop a volume as we did with the muscle file above. We can skip Step 2. Step 3: Save the CT scan in NRRD format. Just as with the muscle file above, save the volume in NRRD format. Click on the save button, make sure that the checkbox for the nrrd file is selected and all other checkboxes are deselected. Specify the correct directory you want the file to be saved in, and click Save.   Step 4: Upload your NRRD file of the head to the embodi3D website. Just as with the muscle file process as shown above, upload the head NRRD file to the embodi3D.com website. Enter in the required fields. In this case, however, under Operation choose the CT NRRD to Skin STL operation, as shown in Figure 20. Figure 20: Selecting the CT NRRD to Skin STL file operation   Step 5: Download your new Skin STL file   After about 5 to 15 minutes, you should receive an email that says your file processing has been completed. Follow the link in the email or look for your file in the list the files you own in your profile. You should see that your skin STL file has been completed, with several rendered images, as shown in Figure 21. Go ahead and download your file. You can then check the quality of your file in Meshmixer as shown in Figure 22. In this instance everything looks great and the file is error free and ready for 3D printing.  
    Figure 21: The download page for your newly created 3D printable skin STL file.   Figure 22: Opening the file in Meshmixer for quality control checks. The file is error free and incredibly lifelike. It is ready for 3D printing.   Thank you very much! I hope you enjoyed this tutorial. If you use this service to create 3D printable models, please consider sharing your models with the embodi3D community. Here is a detailed tutorial that I wrote on exactly how to do this. This community is built on medical 3D makers helping  each other. Please share the models that you create!
     
    • 2 comments
    • 4,510 views
  • Dr. Mike

    A Ridiculously Easy Way to Convert CT Scans to 3D Printable Bone STL Models for Free in Minutes

    By Dr. Mike

    Please note the democratiz3D service was previously named "Imag3D" In this tutorial you will learn how to quickly and easily make 3D printable bone models from medical CT scans using the free online service democratiz3D®. The method described here requires no prior knowledge of medical imaging or 3D printing software. Creation of your first model can be completed in as little as 10 minutes.   You can download the files used in this tutorial by clicking on this link. You must have a free Embodi3D member account to do so. If you don't have an account, registration is free and takes a minute. It is worth the time to register so you can follow along with the tutorial and use the democratiz3D service.   >> DOWNLOAD TUTORIAL FILES AND FOLLOW ALONG << Both video and written tutorials are included in this page.           Before we start you'll need to have a copy of a CT scan. If you are interested in 3D printing your own CT scan, you can go to the radiology department of the hospital or clinic that did the scan and ask for the scan to be put on a CD or DVD for you. Figures 1 and 2 show the radiology department at my hospital, called Image Management, and the CDs that they give out. Most radiology departments will have you sign a written release and give you a CD or DVD for free or with a small processing fee. If you are a doctor or other healthcare provider and want to 3D print a model for a patient, the radiology department can also help you. There are multiple online repositories of anonymized CT scans for research that are also available.     Figure 1: The radiology department window at my hospital.       Figure 2: An example of what a DVD containing a CT scan looks like. This looks like a standard CD or DVD.       Step 1: Register for an Embodi3D account   If you haven't already done so, you'll need to register for an embodi3d account. Registration is free and only takes a minute. Once you are registered you'll receive a confirmatory email that verifies you are the owner of the registered email account. Click the link in the email to activate your account. The democratiz3D service will use this email account to send you notifications when your files are ready for download.   Step 2: Create an NRRD file with Slicer If you haven't already done so, go to slicer.org and download Slicer for your operating system. Slicer is a free software program for medical imaging research. It also has the ability to save medical imaging scans in a variety of formats, which is what we will use it for in this tutorial. Next, launch Slicer. Insert your CD or DVD containing the CT scan into your computer and open the CD with File Explorer or equivalent file browsing application for your operating system. You should find a folder that contains numerous DICOM files in it, as shown in Figure 3. Drag-and-drop the entire DICOM folder onto the Slicer welcome page, as shown in Figure 4. Click OK when asked to load the study into the DICOM database. Click Copy when asked if you want to copy the images into the local database directory.     Figure 3: A typical DICOM data set contains numerous individual DICOM files.     Figure 4: Dragging and dropping the DICOM folder onto the Slicer application. This will load the CT scan.   Once Slicer has finished loading the study, click the save icon in the upper left-hand corner as shown in Figure 5. One of the files in the list will be of type NRRD. make sure that this file is checked and all other files are unchecked. click on the directory button for the NRRD file and select an appropriate directory to save the file. then click Save, as shown in Figure 6.     Figure 5: The Save button     Figure 6: The Save File box   The NRRD file is much better for uploading then DICOM. Instead of having multiple files in a DICOM data set, the NRRD file encapsulates the entire study in a single file. Also, identifiable patient information is removed from the NRRD file. The file is thus anonymized. This is important when sending information over the Internet because we do not want identifiable patient information transmitted.   Step 3: Upload the NRRD file to Embodi3D   Now go to www.embodi3d.com, click on the democratiz3D navigation menu and select Launch App, as shown in Figure 7. Drag and drop your NRRD file where indicated. While NRRD file is uploading, fill in the "File Name" and "About This File" fields, as shown in Figure 8.     Figure 7: Launching the democratiz3D application     Figure 8: Uploading the NRRD file and entering basic information To complete basic information about your NRRD file. Do you want it to be private or do you want to share it with the community? Click on the Private File button if the former. If you are planning on sharing it, do you want it to be a free or a paid (licensed) file? Click the appropriate setting. Also select the License Type. If you are keeping the file private, these settings don't matter as the file will remain private. Make sure you accepted the Terms of Use, as shown in Figure 9.     Figure 9: Basic information fields about your uploaded NRRD file   Next, turn on democratiz3D Processing by selecting the slider under democratiz3D Processing. Make sure the operation CT NRRD to Bone STL is selected. Leave the default threshold of 150 in place. Choose an appropriate quality. Low quality produces small files quickly but the output resolution is low. Medium quality is good for most applications and produces a relatively good file that is not too large. High quality takes the longest to process and produces large output files. Bear in mind that if you upload a low quality NRRD file don't expect the high quality setting to produce a stellar bone model. Medium quality is good enough for most applications. If you wish, you have the option to specify whether you want your output file to be Private or Shared. If you're not sure, click Private. You can always change the visibility of the file later. If you're happy with your settings, click Save & Submit Files. This is shown in Figure 10.     Figure 10: Entering the democratiz3D Processing parameters.       Step 4: Review Your Completed Bone Model After about 10 to 20 minutes you should receive an email informing you that your file is ready for download. The actual processing time may vary depending on the size and complexity of the file and the load on the processing servers. Click on the link within the email. If you are already on the embodied site, you can access your file by going to your profile. Click your account in the upper right-hand corner and select Profile, as shown in Figure 11.     Figure 11: Finding your profile.   Your processed file will have the same name as the uploaded NRRD file, except it will end in "– processed". Renders of your new 3D model will be automatically generated within about 6 to 10 minutes. From your new model page you can click "Download this file" to download. If you wish to share your file with the community, you can toggle the privacy setting by clicking Privacy in the lower right-hand corner. You can edit your file or move it from one category to another under the File Actions button on the lower left. These are shown in Figure 12.     Figure 12: Downloading, sharing, and editing your new 3D printable model.   If you wish to sell your new file, you can change your selling settings under File Actions, Edit Details. Set the file type to be Paid, and specify a price. Please note that your file must be shared in order for other people to see it. This is shown in Figure 13. If you are going to sell your file, be sure you select General Paid File License from the License Type field, or specify your own customized license. For more information about selling files, click here.     Figure 13: Making your new file available for sale on the Embodi3D marketplace.     That's it! Now you can create your own 3D printable bone models in minutes for free and share or sell them with the click of a button.If you want to download the STL file created in this tutorial, you can download it here. Happy 3D printing!  
    • 3 comments
    • 24,934 views
  • embodi3d

    Selling Your Medical Model Files on Embodi3D.com

    By embodi3d

    Dear Community Members,
    After many months of work, we are happy to announce the addition of a feature that will allow you to sell medical models you have designed on Embodi3D.com. While we always have encouraged our members to consider allowing their medical STL files to be downloaded for free, we understand that when a ton of time is invested in creating a valuable and high-quality model, it is reasonable to ask for something in return. Now Embodi3D members have two options: 1) You can share your medical models for free, or 2) you can charge for them. We hope these two options encourage more sharing and file uploads. The more models available, the more it helps the medical 3D printing community.   For more details on how to sell your medical masterpieces on Embodi3D, go to the selling page.         Thanks, and happy 3D printing!
    • 0 comments
    • 652 views
 

Recent FDA Approvals in the World of 3D Medical Printing

Three-dimensional (3D) printing technology was invented in the 1980s to create mechanical prototypes for the manufacturing sector. Healthcare professionals and researchers soon realized the potential of this novel technology in the field of medicine and began depositing desired materials on specific substrates to create anatomical models, surgical instruments, prosthetics and even body parts that could be customized to meet the needs of the user. Scientists rely on MRI and CT scan images of the patients to obtain the exact dimensions for the target object, feed the image data into one or more software programs, and let the 3D printer do its job.

Millions of dollars have been spent on 3D medical printing and bioprinting research in last decade, and such endeavors have led to the creation of several innovative solutions. Nonetheless, many of these products can't benefit the patients until they come with the Food and Drug Administration’s (FDA) seal of approval. Recently, the federal agency woke up to the needs of the 3D medical printing industry and issued guidance for 3D printed medical devices based on design, manufacturing and device testing information. Many 3D printed products have received FDA approval, some of which are highlighted below.

The O2 Vent a 3D Printed Solution for Sleep Apnea
In April, 2016, Oventus, an Australian startup, received FDA approval for its titanium mouth device called the O2 Vent. The customizable oral device contains airways that reach the back of the patient’s mouth bypassing obstructions caused by nose, soft palate or tongue. The 3D printed device is expected to benefit over 37 million Americans suffering from sleep apnea while helping Oventus enter the $50 billion global sleep disorder market.    

Spritam, the FDA approved 3D Printed Drug
In another bold step, the FDA approved a 3D printed drug, Spritam, to treat partial onset seizures, myoclonic seizures and primary generalized tonic-clonic seizures. Its manufacturer, Aprecia Pharmaceuticals, used the ZipDose 3D printing technology to create a pill that disintegrates in the mouth with very little water and is especially beneficial to patients who cannot swallow their medication during seizures. The high-dose drug can impact over 2.4 million American adults with epilepsy, as per an article published in the March, 2016, edition of Forbes.

Lateral Spine Truss System
Another innovative product, the Lateral Spine Truss System, also received a go-ahead from the federal agency in 2016. It consists of 3D printed orthopedic implants, manufactured by 4WEB Medical, that allow for integrated instrumentation and customization. They come in sterile packs and can be used with most mainstream spinal surgery techniques. The goal is to deliver functional implants with a structural design.

CASCADIA Cervical and CASCADIA AN Lordotic Oblique Interbody Systems
The FDA has also issued a 510 (K) clearance to K2M for CASCADIA Cervical and CASCADIA AN Lordotic Oblique Interbody Systems with Lamellar 3D Titanium technology. While CASCADIA Cervical Interbody System is an intervertebral body fusion device, the CASCADIA AN Lordotic Oblique Interbody System has been designed for transforaminal-lumbar interventions. K2M expects its product to help the approximately 800,000 men and women who undergo cervical fusion each year.

3D Printed Cranial Implants
Brazilian and U.S. based BioArchitects collaborated with Swedish 3D printing company ArcamAB to generate patient-specific cranial implants. The company used Electron Beam Melting technology and lightweight titanium alloys to form the implants. Although the FDA approval is restricted to the non-loadbearing bones of the skull and face, healthcare professionals are hopeful that the technology can treat a variety of conditions ranging from trauma to congenital abnormalities.

While 3D printed products with FDA approvals strive to become more accessible to all patients, others are waiting in the pipeline for a green light from the agency. Licensing requirements include extensive lab testing and clinical evaluation. Doctors and scientists are, however, confident the products will meet the criteria and get the necessary endorsements from the FDA to eventually help transform medicine.

Sources:
http://www.news-medical.net/news/20160407/Oventus-gains-FDA-clearance-for-medical-device-designed-to-alleviate-snoring-OSA.aspx

http://www.todaysmedicaldevelopments.com/article/3d-printed-medical-device-4web-8316/

http://www.meddeviceonline.com/doc/k-m-enhances-d-printed-spine-portfolio-featuring-lamellar-d-titanium-technology-0001

mattjohnson

mattjohnson

 

Medical Researchers Use Three Dimensional Printing to Manage Cardiovascular Disease

When a 77-year-old patient at Hong Kong’s Queen Elizabeth Hospital needed a complex heart surgery, the surgeons at the facility relied on three-dimensional (3D) medical printing for additional support. The patient was suffering from two damaged valves and had already undergone three open heart surgeries. Her body was not ready for a fourth intervention. The doctors decided to replace the damaged valves by making a small incision through her blood vessels. However, such an intervention had never been performed. A 3D printer helped the doctors create an exact replica of the patient’s heart and practice the intervention several times. They completed the actual procedure successfully in just four hours.   3D Printing Heart Helps with Cardiovascular Surgical Planning
Surgeons at pediatric cardiac surgery center at the People’s Hospital in China also used a 3D printed model of the patient’s heart to analyze the anatomical abnormalities closely prior to the surgery. Their nine-month-old patient was born with malpositioned pulmonary veins and an atrial septal defect. The surgeons acknowledged that the anatomical model contributed significantly to the success of the intervention.   Researchers in other parts of the world are also looking at additive printing or 3D printing technology to treat and manage cardiovascular illnesses more efficiently. The technique involves deposition of desired materials on a substrate in a predetermined manner to print an object of choice. Healthcare professionals believe that this revolutionary tool will help millions of patients suffering from heart disease and stroke. An estimated 17.5 million people died globally from such conditions in 2012, as per the World Health Organization. They were also responsible for one in four deaths across the United States, as per the Center for Disease Control and Prevention.   3D Printing Blood Vessels
The use of 3D printing technology is not limited to the creation of anatomical models. Scientists at Saga University in Japan used the Kenzan method of 3D printing to develop 2mm by 5 mm blood vessels for patients with myocardial infarction. The researchers used tiny vertical spikes to position the cells and form tubular structures in a nutritious broth. Traditionally, cardiologists replaced the damaged blood vessels of the heart with healthy ones from other parts of the body. However, finding compatible replacements without impacting other physiological functions has been a challenge. The 3D printed implants can be customized as per the needs of the patient and can be used to replace the damaged veins and arteries with precision. Cyfuse Biomedical is employing tissue engineering techniques as they work to bring bioprinted nerves, blood vessels, cartilage, liver and heart muscle to the clinic.     3D Printing Heart Valves
In another instance, scientists at Denver University custom printed heart valves that are the replicas of the original ones. Researchers obtained specific dimensions of the valves from CT and MRI scans and bioprinted them in just 22 minutes. Denver researchers are currently working to improve the biocompatibility of the 3D printed valves. The ultimate goal is to design patient-specific implants with a low risk of graft rejection.   Given these developments, healthcare professionals and scientists are immensely hopeful about the development of a 3D printed heart. The biggest challenge, lies in creating a network of functional blood vessels that will allow the organ to survive in the body for a prolonged period of time. While the idea of printing a human heart may seem far-fetched, it is evident that 3D printing is influencing cardiovascular disease management in a big way.   Sources:
http://www.chinadaily.com.cn/china/2016-03/17/content_23921711.htm   https://www.regmednet.com/users/3641-regmednet/posts/11230-nerve-and-blood-vessel-regeneration-using-3d-bioprinting-technologies   http://www.thedenverchannel.com/money/science-and-tech/denver-university-researchers-use-3d-bioprinter-to-create-artificial-body-parts

mattjohnson

mattjohnson

 

Advances in Otology: Overcome Hearing Loss With 3D Printing

Recent developments in the field of three-dimensional (3D) medical printing and bioprinting can revolutionize the way doctors approach ear disorders. The technology, also known as additive printing, allows the user to deposit a desired material on a specific substrate in a pre-determined manner to create 3D prints with definitive shapes and sizes. Scientists and healthcare professionals are already relying on this technology to create surgical instruments, anatomical models, diagnostic tools, prosthetics and even body parts. These novel solutions are offering hope to more than 360 million men, women and children across the globe who suffer from some form of hearing loss.   3D Printing and Smart Phones Make for Easy and Affordable Diagnoses
Recently, students of A&M Texas University’s chapter of Engineering World Health used a 3D printer to create LED ostoscope smartphone attachments that take pictures of the patients’ inner ears and help diagnose conditions contributing to hearing loss. Unlike traditional ostoscopes that cost hundreds of dollars, these smartphone attachments can be built for just $6.42. Doctors working in underprivileged areas of South Asia, Asia Pacific and Sub-Saharan Africa can depend on this imaging device for accurate diagnosis, prompt treatment and effective prognosis.   3D Printed Hearing Aids
Ontenna, a simple hairclip with a built-in hearing aid, is another glowing example of the way 3D printing technology is impacting Otology. The 3D printed device picks up sounds between 30 and 90 decibles and translates them into 256 different vibrations and light patterns that allow the wearer to actually feel and see the sound. Ontenna was developed by Tatsuya Honda, a researcher and sign language interpreter, who worked closely with the deaf community and understood the drawbacks of traditional hearing aids. The device is currently in the testing phase and may soon be available for commercial use.  
3D Printing and Ear Prosthetics
In another pioneering attempt, physicians at Royal Hospital for Sick Children in Edinburgh, Scotland, under the supervision of Dr. Ken Stewart, adopted the 3D printing technology to treat microtia, a congenital disorder characterized by underdeveloped ears. Traditionally, children with this condition were required to lay down in an MRI machine for a significant period of time while the doctors obtained a 2D tracing of the normal ear. Understandably, most children were overwhelmed by the process and became fearful of it. Doctors in Edinburgh are now using a 3D scanner to obtain the exact dimensions of the child’s ear. A 3D printer then creates a replica of the organ, which is sterilized and used during the carving process. Dr. Stewart is also working with Edinburgh University’s Centre for Regenerative Medicine and Chemistry Department to bioprint an ear using the patient’s own stem cells and is very excited about the potential of 3D printing in managing hearing loss.  3D Printing the Ear
A study published in the October, 2015, edition of the journal Nature Biotechnology revealed that researchers have succeeded in printing human-sized ears with the help of the Integrated Tissue and Organ Printing System (ITOP) and have implanted them into mice. The implanted organs retained their shape over the next two months and formed blood vessels and cartilages. Success of ITOP in animal models is a big step in the right direction as it will allow doctors to print complex ear implants that are stable and functional.   Most people take their sense of hearing for granted. However, many conditions ranging from infections and injuries to fluid problems can impact it. Physicians and patients are looking for treatments that will help overcome deficiencies associated with existing modalities, and 3D printing technology is helping them do just that.
Sources:
http://thebridge.jp/en/2015/08/ontenna-lets-you-hear-sounds-through-your-hair   http://www.bustle.com/articles/142312-3d-printed-ear-jaw-muscle-implants-are-revolutionizing-medical-technology

mattjohnson

mattjohnson

 

Advances in Ophthalmology, Medical 3D Printing and Bioprinting to Treat Eye Diseases

Three-dimensional bioprinting and medical printing technologies are influencing the field of ophthalmology in a big way. Quingdao Unique, a Chinese bioprinting company, had announced in 2015 that they will be able to print 3D corneal implants within a year. Their products will be available for animal testing initially, and if everything goes as per plan, their 3D printed human corneas could be ready for clinical trials in the next two to three years. The company’s third generation bioprinter provides optimal conditions for cell growth with a temperature range of 0 to 50 degrees Celsius, humidity regulation range of 80 to 98 percent, and pH of 7.0 to 7.5. Quingdao plans to overcome strength and flexibility issues associated with most human implants by using the patient’s own cells for printing.   Ophthalmologists across the globe are very excited about this development. Corneal transplants help treat vision loss due to infections, congenital deformities and injuries. In fact, cornea is the most commonly transplanted organ in the United States with over 40,000 patients receiving a new one each year, as per the American Transplant Foundation. Yet, 53 percent of the world’s population does not have access to corneal transplantations, as per a global survey published in the February, 2016, edition of the journal JAMA Ophthalmology. Additionally, many patients experience complications when their immune systems reject the transplanted graft.   Three-dimensional bioprinting is, however, expected to change all that. Scientists and healthcare professionals can rely on additive printing technology to deposit patient’s own cells and other compatible materials in a pre-determined manner on a desired substrate to create patient-specific implants with a lower rate of rejection. The 3D bioprinting technology also accounts for the natural anatomical variations that exist among humans. Doctors can refer to radiological images of the patients’ eyes to generate implants that have the same dimensions as the original one.
3D Printing Aids in the Diagnosis of Glaucoma and Other Eye Diseases
Dr. Andrew Bastawrous, a Kenya-based eye surgeon, created a smart phone app to diagnose eye diseases such as glaucoma, macular degeneration and diabetic retinopathy. The app relies on the patient’s perception of the various orientations of the letter “E” to provide the diagnoses. A small 3D printed adapter can be added to the camera of the smartphone to obtain an image of the retina on the screen of the phone while administering the test. This technology is helping Dr. Bastawrous diagnose and treat thousands of patients with eye diseases in underprivileged areas of sub-Saharan Africa.     Ophthamology Surgical Planning
The use of 3D printing is not limited to corneal transplantations. Surgeons can use this technology to create models of the patient’s eyes and practice the procedure before the actual intervention. This preparation “would allow a full appreciation of the anatomic relationships between the lesions and the complicated surrounding structures,” as per an article published in the journal Investigative Ophthalmology and Visual Science. This invaluable tool has also transformed clinical practice and education. Researchers are using a 3D Systems Z650 printer to produce “highly realistic” 3D prints of orbits that offer enhanced visualization of the delicate nerves of the eye. The 3D models are made from non-human materials and thereby, help avoid the ethical questions associated with cadaver specimens.   These recent developments only form the tip of the iceberg. Nonetheless, they clearly exemplify the limitless possibilities of 3D printing in ophthalmology. The technology is bound to simplify the treatment of eye diseases and improve patient outcomes dramatically.

mattjohnson

mattjohnson

 

Hydrogels in 3D bioprinting May Lead to Organ Printing

According to the US Department of Health and Human Services, 22 patients die each day in need of an organ transplant because the demand for organs far outpaces the supply. If the compelling idea of producing 3D printed organs is realized many lives could be saved.   A big challenge in this field is to produce printable material that can support cells and is also permeable to nutrients. A hydrogel is a type of synthetic cross-linked polymer that is highly water absorbent. Hydrogels are commonly used as tissue engineering scaffolds for cells because of their biocompatibility.   This is a hot topic in the field right now, and many people around the world are working on developing new bioprinting methods. A challenge to the development of these methods is how well the printed object corresponds to the plan.   A group of Chinese scientists did a study of how various printing parameters affected printing fidelity. They published their results last week in Scientific Reports, the premier scientific journal Nature brand’s open source online journal.   The printing material or bioink must be liquid before printing and gel after printing. To make their hydrogels, they used sodium alginate (the same material this group used to print vasculature), gelatin, and a solution of calcium chloride as a cross linker.   In order to develop a bioprinting process, they feel it is important to understand the impact of changing the printing parameters including air pressure, temperature, feed rate, and printing distance. Another parameter included the ratio of gelatin and alginate.   Using a lab-built 3D printer, they started out with printing 1D lines on a flat surface, connected at different angles. They moved on to lattice shapes as shown in the image above, looking at how well the lattice maintained its shape with different line spacings. The hydrogel tends to spread somewhat upon printing. The printing surface was cooled so that the gel formed. The experiments also determined the impact of gravity.   They used extrusion based printing as opposed to other types of printing because cells are sensitive to thermal and mechanical stress. They found that the 3D printing process did not damage or kill mouse fibroblast cells suspended in the hydrogel as it only had a slight impact on cell survival.   Finally, the looked at a 3D object with successive printed layers as shown in the figure below.   a- Digital model b- Outline of the first layer c- First layer with outline filled in d- Views of 3D structure with about 30 printed layers
 

Biopen and Bio Ink: 3D Printed Cartilage for the Knee

The knee joint is the strongest and the largest joint of the human body. It consists of the lower end of the thighbone, upper end of the shin bone, and the knee cap. The three bones are connected to each other with articular and meniscal cartilages that act as shock absorbers and help protect and cushion the joint. Degeneration of the knee joint due to age and overuse can cause unwanted friction and bone spurs. The condition, also known as osteoarthritis, is the most prevalent form of arthritis and is often seen in individuals over 50 years of age.   Osteoarthritis develops slowly and leads to worsening pain and stiffness of the knee joint, grinding or clicking noise during movement, and weakness in the knee. Treatment involves lifestyle changes, physical therapy, and viscosupplementation injections. Patients with severe form of the disease may require a surgical intervention. During the process, the doctor may remove cartilage from another part of the body and place it in the knee or may replace the damaged cartilage with plastic and metal implants.
Researchers across the globe are now looking at three-dimensional (3D) medical printing and bioprinting technologies to create highly compatible, patient-specific knee implants that will increase the success rates of total knee arthroplasty by improving patient outcomes and lowering the risks of a revision surgery. Unlike traditional implants that come in a few specific shapes and sizes, 3D printed cartilages can be customized as per the needs of the patient. Surgeons can use the additive printing technology to print larger cartilages as well.   The Biopen: A Handheld Bioprinter Used During Operations
A team of researchers and surgeons from St. Vincent’s Hospital, Melbourne, developed the Biopen, a type of 3D printer that helps doctors create cartilaginous tissue fragments during the actual surgical intervention. The surgeon can customize the size and the shape of the tissue as per the needs of the patient. Researchers predict that the medical-grade plastic and titanium Biopen will lead to 97 percent survival of the cells and will transform knee surgeries forever.     This technology may, however, have some drawbacks. The human cartilage is made of only one type of cell. Scientists, therefore, tried to grow the tissue by embedding specific cells in a hydrogel but the liquid medium may restrict cell growth and intercellular communication. Consequently, the new implant may not have the desired mechanical integrity. Additionally, the degradation of the hydrogel may lead to the formation of toxins that would inhibit cell growth. Hence, researchers began looking for other materials to create cartilage implants.   A New Bio-ink Holds Promise for Printing Cartilage
Scientists at Penn State, under the supervision of Dr. Ibrahim T. Ozbolat, created tiny tubes from algae extracts, injected cow cartilage cells into them, and allowed the tubes to grow for a week to create tiny cartilage strands. A bio-ink made from these strands was fed into a specially designed nozzle of a 3D printer to develop cartilage tissues of the desired size. Although this 3D printed cow cartilage is weaker than its natural counterpart, it is definitely better than the hydrogel version. Dr. Ozbolat believes that the implants will strengthen once they get exposed to the pressure from the joints. His team also hopes to mimic the entire process using human cartilage cells.     The Center for Disease Control and Prevention (CDC) estimates that one in two Americans will be diagnosed with osteoarthritis by the age of 85. An estimated 249,000 children under the age of 18 also suffer from some form of arthritis. Additive printing technology is offering hope to millions of individuals looking to overcome pain and improve quality of life. While most of these products are still at an inceptive stage, researchers are trying to start clinical trials at the earliest and get the required approvals in the not-so-distant future.   Sources:   https://www.engadget.com/2016/04/04/biopen-lets-doctors-3d-print-cartilage-during-surgery/   https://www.sciencedaily.com/releases/2016/06/160627094828.htm

mattjohnson

mattjohnson

 

Role of Medical 3D Printing in Spine Surgery

Defects and deformities of the vertebral column can have a debilitating impact on the patient’s quality of life. Thirteen-year-old Jocelynn Taylor was no different. She was diagnosed with scoliosis, a condition characterized by an abnormally curved spine that may develop in children during one of their growth spurts. Jocelynn’s condition prevented her from being active in school and at home. Her vertebral column was also pushing her lungs and preventing her from breathing normally.   3D Printing Aids in Complex Spinal Surgery
Unlike most scoliosis patients, Jocelynn’s curvature extended past 100 degrees and required a complex surgery. Physicians at Children’s Hospital in Colorado took up the challenge under the supervision of Dr. Sumeet Garg. They worked closely with engineers at Mighty Oak Medical to create a specific three-dimensional (3D) model of Jocelynn’s spine. The model helped Dr. Garg with pre-surgical planning. He also practiced the surgery several times prior to the actual procedure and was prepared for any eventuality that could have crop up during the intervention. The surgeon also relied on additive printing technology to print customized brackets to straighten the vertebral column. Since the surgery, Jocelynn has been able to live life to without any restrictions and is immensely excited about the upcoming school year.   Dr. Ralph Mobbs, a neurosurgeon at the Prince of Wales Hospital in Sydney, worked with an Australian medical device company to print an exact replica of a patient’s cervical spine and its underlying tumor. He used the model to understand the patient’s anatomy and practice the surgical intervention. In the past, doctors usually avoided such procedures as one small mistake could lead to permanent nerve damage and quadriplegia. The 3D model helped Dr. Mobbs successfully remove the patient’s tumor without impacting the surrounding nerves.   Approximately 276,000 people across the United States are living with spinal cord injuries. An estimated 7 million people suffer from scoliosis. About 24,000 men and women have malignant tumors in their spinal cord. People also suffer from other spinal conditions such as spondylosis and intervertebral disc degeneration. Additive printing technology is influencing the way doctors approach these conditions and is helping improve patient outcomes significantly.   3D Printing Spinal Implants
Spinal tumors have also received a lot of attention in recent times. While their treatment often involves drastic measures, 3D printing is making it easier for patients to recover and rehabilitate quickly after the intervention. For example, surgeons in China had to remove a significant portion of a patient’s backbone along with the tumor to prevent the spread of his cancer. While the patient was able to beat the disease, he was unable to use his legs. Orthopedic surgeons at Beijing’s Third University Hospital, under the supervision of Dr. Liu Zhongjun, 3D printed patient-specific spinal implants to replace five missing vertebrae. The 7.5-inch long titanium mesh constructs allow the patient’s own spinal cord to grow over time, and the implant will automatically biodegrade over time.   Although some of these cases have received extensive media attention, they are not the only ones. Doctors across the globe are relying on 3D medical printing and bioprinting technologies to treat and manage many types of spinal conditions. In another important step forward,Oxford Performance Materials (OPM) received the Food and Drug Administration (FDA) approval for its spinal implant system designed to replace thoracolumbar vertebrae T10 to L1. The Connecticut-based company is now offering hope to thousands of patients with spinal trauma or cancer. The polymer construct met all the load-bearing and fatigue requirements of the FDA and is now available for patient use through specific distributors. OPM is working to expand its product line to include additional lumbar and cervical vertebrae. Other companies and research organizations are also looking for newer treatments that will help patients lead productive lives, in spite of their spinal problems. Collectively, these attempts will make 3D printing technology indispensable in the not-so-distant future.   Sources   http://www.abc.net.au/news/2016-02-22/tumour-patient-gets-worlds-first-3d-printed-vertebrae/7183132   http://english.cntv.cn/2014/08/18/VIDE1408306798015287.shtml   http://www.tctmagazine.com/3D-printing-news/oxford-performance-materials-gets-fda-approval-for-first-in-kind-spine-fab-3d-printed-127384/

mattjohnson

mattjohnson

 

3D Printing Brain Leads to Advances in Neurology

The brain is arguably the most important organ within the human body as it controls major physiological and psychological functions responsible for growth and survival. Several conditions, including cancer, stroke, infections, inflammation, congenital deformities, and Alzheimer’s disease, can impair brain function and lead to serious illnesses and disabilities. Treatments may include medications, surgery and physical therapy among other things. Researchers across the globe are spending millions of dollars to improve patient outcomes and to enhance the quality of life of individuals with brain diseases. Three-dimensional (3D) medical printing and bioprinting are playing a crucial role in identifying new treatments and facilitating the implementation of existing ones.   3D Printing Brain Helps Doctors Treat Patients
Human brain is a complex organ made up of over 100 billion neurons that form trillions of connections, known as synapses, to send and receive messages. Each neuron plays a specific role in the body, and minor errors during surgical interventions may lead to serious complications and permanent loss of bodily functions. Neurosurgeons often rely on MRI and CT scan images to understand the anatomy of the patient’s brain and the actual defect. While the images are fairly accurate, they provide limited information and tend to miss crucial aspects of the problem that may impact the surgery.   Doctors are looking at 3D printing to increase the chances of a successful outcome. Neurosurgeon Mark Proctor and plastic surgeon John Meara of Boston Children’s Hospital created a 3D model of the brain of an infant, who was born with a part of the tissue outside his skull. The physicians obtained specific measurements of the patient’s brain from scanned images and fed the data into a computer to generate the 3D model. The model helped the doctors study the patient’s abnormality in detail and practice the procedure prior to the actual intervention.     Harvard University researchers studied several MRI scans before printing a three-dimensional smooth brain of a fetus, equivalent to the one at 20 weeks of gestation. The researchers, then, coated the 3D-printed brain with a thin layer of gel to the mimic cerebral cortex and placed it in a liquid to study the formation of folds in the brain. The aim was to understand congenital brain folding abnormalities and to help improve life expectancies of babies born with such defects.   The use of 3D printing is not limited to the treatment of anatomical abnormalities. Researchers at Heriot-Watt University in Edinburgh are printing stem cells and other types of cells found in brain tumors using additive printing technology to recreate tumor-like constructs for the laboratory. The multicellular models are being used to study the anatomy and the physiology of brain tumors. Researchers are also relying on them to test new drugs and therapeutics that may finally help cure for this deadly disease.   3D Printed Microchips and Prosthetics Combine for a Sense of Touch
Prosthetic arms and limbs have been in use for several decades. However, most devices were clunky and uncomfortable. Three-dimensional medical printing has helped create prosthetics that can be customized to fit the patient perfectly. Modern, robotic versions can also help the patient move the limb as required. St. Vincent’s Hospital’s Aikenhead Centre for Medical Discovery has coordinated with scientists at University of Melbourne, the University of Wollongong, and several other institutions to take prosthetic arm research to the next level by developing a 3D printed prosthetic arm with a sense of touch. The idea is to establish a direct connection between the prosthetic limb and the patient’s brain.   The researchers are relying on 3D printed muscle cells on microchips to communicate with implanted electrodes, natural tissues and cells. A prototype of this robotic arm is expected by the end of 2017. Apart from producing high quality prosthetic arms, this new technology may also help treat other serious illnesses, including epilepsy, by establishing connections between nerve cells and electrodes to translate brain signals.   Stroke and Alzheimer’s disease are one of the leading causes of death in the United States, as per American Academy of Neurology. Furthermore, 8 out of 10 diseases found in the World Health Organization’s list of three highest disability classes have a neurological origin. Three-dimensional medical printing and bioprinting are offering novel insights into brain diseases and neurological problems and are allowing scientists and physicians to find cures with a lasting impact.   Sources:
http://www.digitaltrends.com/cool-tech/3d-printed-skull/   http://www.digitaltrends.com/cool-tech/brain-cancer-3d-printing/   https://biotechin.asia/2016/06/02/3d-printing-of-brain-tumors-a-step-closer-to-treatment/

mattjohnson

mattjohnson

 

Impact of 3D Printing on Stem Cell Research and Therapy

Stem cell research has been plagued with innumerable controversies and ethical questions. Most researchers agree that these undifferentiated embryonic cells have the potential to treat serious conditions such as heart disease, diabetes, stroke, arthritis, and Parkinson’s disease. They may also help evaluate the impact of new drugs and therapies at the cellular level.   Scientists, however, must be able to differentiate the stem cells consistently within a controlled environment to meet their specific needs. Furthermore, obtaining these cells from five to six day old embryos may not be acceptable to everyone. The scientific community is, therefore, looking at three-dimensional (3D) bioprinting to overcome some of the obstacles associated with stem cell research and to make the treatments more accessible, efficient and safe.   3D Printed Stem Cells
There have been multiple attempts to print stem cells in the laboratory. Nano Dimension, an Israel-based technology firm, recently filed a patent for 3D printed stem cells. The company collaborated with Accellta, which is known for its stem cell suspension and induced differentiation technologies. Researchers from both organizations worked together to accelerate the printing process with the help of a specially adapted 3D printer that can print billions of high quality stem cells per batch. Nano Dimension believes that its technology can benefit pre-clinical drug discovery and testing, toxicology assays, tissue printing, and transplantation.   Previously, scientists at Heriot-Watt University in Edinburgh created a cell printer that produced living embryonic stem cells. The printer, a modified CNC machine, was fitted with two bio-ink dispensers. The machine dispensed layers of embryonic stem cells and nutrient media in a specific pattern that was ideal for differentiation.   In another study, researchers at Tsingua University in China and Drexel University in Philadelphia developed homogenous embryoid bodies using the 3D printing technology. The process mimicked early stages of embryo formation that involves clumping of the pluripotent stem cells. Researchers of this study believe that these little building blocks will pave way for the creation of larger, heterogeneous embryoid bodies.   Recent Applications of 3D Bioprinting
Bioprinted 3D stem cells are also being used to treat a variety of conditions. For example, researchers at ARC Center of Excellence for Electromaterials Science and Orthopedicians at St. Vincent’s Hospital, Melbourne, have developed a 3D printing pen that allows surgeons to create customized cartilage implants from human stem cells during the surgery. The handheld device offers unprecedented control and accuracy. The pen works by extruding the patient’s own stem cells along with a hydrogel. The cartilage tissue has a 97 percent survival rate and can heal the body over time. Researchers believe that this technology can also be used to create skin fragments, muscles and bone structures.   As part of the MESO-BRAIN initiative, led by Aston University, scientists differentiated human pluripotent stem cells into specific neurons on a specially defined 3D printed scaffold. The final structure was based on the outer layer of the cerebrum and included nanoelectrodes that enabled electrophysiological function of the neural network. The technology will help develop cellular structures for pharmacological testing and help find cures for complicated mental illnesses such as Parkinson’s disease and dementia.   Three-dimensional bioprinting technology is growing at a rapid pace, and scientists are using it to print stem cells as well. The 3D printed versions resemble the actual stem cells in structure and function without some of the drawbacks. Scientists and healthcare professionals across the globe are, therefore, excited about the limitless possibilities of 3D printing and its impact on stem cell research.
Sources:
http://www.tctmagazine.com/3D-printing-news/nano-dimension-accellta-3d-bioprinter-stem-cells/   http://www.sciencealert.com/scientists-have-found-a-way-to-3d-print-embryonic-stem-cell-building-blocks

mattjohnson

mattjohnson

 

Can Medical 3D Printing and Bioprinting Create Transplantable Kidneys?

Close to 26 million people suffer from some form of kidney disease, and one in three Americans are at risk, as per the National Kidney Foundation. Diabetes, high blood pressure, and family history often contribute to chronic kidney disease that can lead to kidney failure. Other conditions include cancer, infections, stones and cysts. Remedies could range from medications and chemotherapy to corrective surgeries and transplantation. Three-dimensional (3D) medical printing and bioprinting are transforming the field of nephrology by facilitating existing treatments and by improving the success rates of difficult surgical interventions.   Kidney Three-dimensional Models
The kidneys are two bean-shaped organs consisting of over one million nephrons that filter blood and remove waste from the body. Their intricate structure complicates diagnoses and treatment of kidney diseases. Additionally, the organs are located right below the rib cage and are surrounded by several other sensitive and important body parts. Surgeries can, therefore, get problematic, especially without proper imaging.   Healthcare professionals are trying to manage these issues by generating exact replicas of the patient’s kidneys using 3D printing technology. The models help them understand the anatomy of the patient and the abnormality prior to the actual treatment. Physicians at Department of Urology and Kidney Transplantation at the University Hospital (CHU) de Bordeaux in France scan patients’ kidneys and use the images to obtain specific measurements of the organs. They feed the information into a computer and rely on a Stratasys’ color, multi-material 3D Printer, to print models of the actual organs. These color-coded replicas are assisting the doctors with pre-surgical planning, especially when dealing with inaccessible tumors and kidney sparring surgeries. Researchers believe that the 3D models help prevent nerve and blood vessel damage during the intervention and significantly lower the risk of serious post-surgical complications.   Physicians in other parts of the world have also started using such tools. In a recent case, surgeons at Intermountain Medical Center in Utah studied the 3D printed model of a patient’s kidney and her tumor prior to the surgery to avoid major mistakes during the procedure. The detailed model helped Dr. Bischoff successfully remove the tumor without damaging the kidney. In another pioneering case, surgeons at Great Ormond Street Hospital in London transplanted an adult kidney into a child. Surgeons created 3D printed replicas of the donor kidney and the child’s abdomen to ensure the kidney can fit in properly. They also used the model to practice the surgery prior to the actual procedure. Given the immense impact, researchers are working hard to create machines and materials that make 3D printing more accessible and affordable for everyone.   Can Bioprinting Create Transplantable Kidneys?
At Fissell’s Kidney Project, doctors, scientists and bioengineers from a dozen different universities across the United States are collaborating under the supervision of Vanderbilt University Medical Center’s nephrologist and Associate Professor of Medicine Dr. William H. Fissell IV to create the first 3D bioprinted kidney for human transplantation. The goal is to develop a synthetic kidney with a microchip processor that acts as a mini dialysis unit. The implant will be powered by the pressure created due to natural blood flow in the body. The team expects clinical trials to begin by 2017. The National Kidney Foundation states that over 100,000 Americans are waiting for a kidney transplant with an average wait time of 3.6 years. About 13 people die each day waiting for a compatible kidney. If successful, the Fissell’s kidney project will offer hope to thousands of patients looking for a donor.   Kidneys plays a crucial role in waste removal and regulation of the blood pressure, and kidney diseases can have a debilitating impact on the individual’s quality of life. Three-dimensional medical printing and bioprinting are helping overcome some of the drawbacks associated with conventional treatments and are, thereby, helping improve patient outcomes.   Sources:
http://www.prnewswire.com/news-releases/french-hospital-enhances-complex-kidney-cancer-surgery-planning-with-stratasys-color-multi-material-3d-printing-534025371.html   http://www.healthcareitnews.com/news/intermountain-surgeons-save-patients-kidney-3d-printing-during-dicey-operation

mattjohnson

mattjohnson

 

3D Printing Makes Rib Implants Less Prone to Complications

The removal and reconstruction of a large part of the chest wall is often required to treat malignant tumors that occur in the cartilage or bone of the ribcage. However, the potential for complications in these types of surgeries is unacceptably high—the overall complication rate is over 40% and the 30-day mortality rate is up to 17%. Many of the complications are respiratory-related.   A team of doctors at Asturias University Central Hospital, in Asturias, Spain suspected that the patients’ difficulty breathing resulted from the stiffness of the implants. They performed a surgery using 3D printed titanium rib implant designed to be more flexible.   Using 3D printing to produce rib implants to replace parts of the ribcage is not new. A world-first surgery with a 3D printed implant was also performed about a year ago, also in Spain, according to articles published in Forbes and Gizmodo (entry image credit).   Because each person’s ribcage structure is unique, using 3D printing to produce such implants has the obvious advantage of producing an exact replica.   Both implants were made using information from a CT scan, and printed using the same technique—layer-by-layer electron beam melting starting with titanium powder in a high vacuum by an Arcam Q10 printer.     In this more recent surgery, the doctors made the implant less rigid by incorporating articulations as shown in the figure, on the right side of the implant. As you can see such a complicated object could only be created in one piece using 3D printing techniques. They published their findings in the Journal of Thoracic Disease.   Picture of titanium rib implant, Journal of Thoracic Disease  The 57 year old male patient regained normal function after six weeks without complications.   CT scan eight weeks after surgery, Journal of Thoracic Disease
 

3D Printed Dental Implants Are Transforming Dentistry

Since the 1970s, modern dental implants have helped millions of patients suffering from tooth loss due to periodontal diseases and injuries. Their success encouraged researchers and dental professionals to come up with newer designs to improve patient care. As three-dimensional (3D) printing became more efficient and accessible, dental professionals also began using the technology to create customized dental implants.
Recent Developments of 3D Printing in Dentistry
Most 3D printers use additive manufacturing technology, which allows dental laboratory technologists to deposit desired materials on a substrate in a specific pattern. The technologists scan the patient’s jaw to obtain specific measurements and enter the data into a computer. The printer uses this data to create customized implants with unprecedented accuracy and fit.   Maxillofacial surgeons at Baruch Padeh Medical Center and A. B. Dental created 3D printed titanium implants to help a 64-year-old man suffering from a metastatic tumor at the back of his jaw. The condition affects 1 to 1.5 percent of people suffering from malignant tumors and is characterized by pain, difficulty chewing and disfigurement. The 3D printed custom-made implants reduced recovery time after the surgery and helped enhance the patient’s quality of life.   As part of another revolutionary research study, scientists from University of Groningen in the Netherlands have developed 3D printed teeth using antimicrobial polymers. These replacement teeth and veneers contain positively charged resin groups that kill the bacteria, Streptococcus mutans, by producing holes in its cell membrane. Analysis within the laboratory indicated that the treated new teeth suppressed the growth of pathogenic bacteria by almost 99 percent when compared to their untreated counterparts. Additionally, these teeth are made from inexpensive polymers that are readily available.   In another pioneering attempt, researchers at University of Louisville recently developed a fully digital dental surgery protocol using 3D scanning, CNC milling and 3D printing to restore lost teeth. This new procedure skipped several steps from the existing implant manufacturing techniques and thereby, made the surgical intervention more efficient and accurate. The researchers used a 3D scan to obtain specific measurements of the missing teeth and relied on a CNC mill to generate the implant. They created an exact replica of the patient’s oral cavity with a 3D printer to guide the dentist during the actual surgery.   Benefits of 3D Printed Implants
While the above-mentioned examples offer insights into the rapidly growing field of 3D printed dental implants, multiple new inventions are happening as we speak. The ultimate aim is to overcome the drawbacks associated with traditional dental implants, which involve complex and invasive surgical interventions that are time-consuming and risky. The newer 3D printed implants allow dentists to replace lost teeth with pinpoint accuracy and minimal discomfort. The technology also allows surgeons to customize the implants as per the specific needs of the patient for more aesthetic results. Laboratory professionals can generate dental models and implants at a faster rate, thereby lowering the wait time for the patients.   More than 30 million Americans are missing all teeth from one or both jaws, as per the American Academy of Implant Dentistry. Over 3 million people have dental implants at this time, and this number is increasing by 500,000 each year. Dental surgeons across the globe hope that 3D printed implants will make treatment more accessible, safe and cost-effective for all the patients, and thereby, help them overcome tooth loss with dignity.   Sources:   http://www.stratasys.com/resources/case-studies/dental/oratio-bv   http://www.thejpd.org/article/S0022-3913%2816%2900031-7/abstract   http://www.gizmag.com/3d-printer-teeth-kill-bacteria/40161/   http://www.smithsonianmag.com/innovation/these-3d-printed-teeth-fight-bacteria-180957030/?no-ist

mattjohnson

mattjohnson

 

Difference Between 3D Medical Printing and Bioprinting

Difference Between 3D Medical Printing and Bioprinting
The first three-dimensional (3D) printer was invented by Charles Hull in 1984. In the next 30 years, the technology advanced rapidly and evolved into a $3.07 billion industry by the end of 2013. The 2014 Wohler’s report expects this number to grow to $12.8 billion by 2018 and exceed $21 billion by 2020. Unlike the past, the use of 3D printing technology is not limited to prototyping and development of traditional consumer products such as cars and electronics. The technology has also revolutionized the field of medicine as scientists and healthcare professionals are using 3D printing to print everything from prosthetics and surgical instruments to medications and biological tissues. The goal is to develop highly specific therapeutics to manage complex illnesses and injuries.

What is 3D Medical Printing?
A variety of 3D printers are available in the market today. While some versions are highly versatile, others have been specifically designed to create a particular type of product. Traditional 3D medical printers use inorganic compounds such as polymer resins, metal, plastic, ceramic and rubber among other things. The printer will deposit the desired materials on a substrate in a specific pattern that is based on the texture and the dimensions of the target object. Users often rely on scanned images of the target to obtain accurate measurements. Research labs, surgeons and corporations have used this technology to create surgical instruments, implants and models of various tissues and organs.
How is Bioprinting Different?
Traditional 3D medical printing and bioprinting are obviously inter-related and somewhat similar to each other. In fact, many people use the terms interchangeably. While both printers use the same basic additive printing technology, bioprinting and 3D printing differ significantly at the implementation level mainly because of the type of raw materials they use.   Bioprinters have been designed to deposit biological materials such as organic molecules, bone particles, cells and other extracellular matrices on a desired substrate. Unlike traditional 3D medical printing, this process involves complex designing and extensive scaffolding as it aims to generate multicellular structures that mimic the real tissue in structure and function. In most cases, the printer should be maintained within a controlled environment to retain the viability of the product. Organovo is a leading company in the field of bioprinting.     Currently, bioprinting technology is being used to print tissue fragments, dental and bone implants, medications, and prosthetics. The products can be customized as per the specific needs of the patient or the research study. Many pharmaceutical companies are using bioprinted tissue fragments to understand the actual impact of medications and other therapeutics at the cellular level. Surgeons are also hopeful that the highly compatible bioprinted implants and tissues will increase the success rates of transplantation surgeries. In fact, many products are already undergoing clinical trials.   As per TechNavio, a leading market research company, the bioprinting industry will grow at the rate of 14.52 percent between 2013 and 2018. Along with 3D medical printing, it is helping surgeons and other healthcare professionals understand the human body in great detail. The two technologies are complementing each other and are evolving together to change medicine forever.
Sources:   http://www.azom.com/article.aspx?ArticleID=12824

mattjohnson

mattjohnson

 

Upcoming National Week of Making features medical 3D printing

Two years ago, the White House declared a week in mid-June the “national week of making,” to coincide with the DC Maker Faire. Since then, they have continued this tradition, providing funding and initiatives to encourage hands-on STEM education. This year’s national week of making starts on Friday, June 17-23 and DC’s Maker Faire is June 19th and 20th.   At last year’s events, President Obama said, “Makers and builders and doers— of all ages and backgrounds—have pushed our country forward, developing creative solutions to important challenges and proving that ordinary Americans are capable of achieving the extraordinary when they have access to the resources they need,” quoted on the White house blog announcing last year’s makers’ week.   In this spirit, the Department of Education launched a contest three months ago to challenge high school students to design makerspaces for their schools. They could receive support for the process, such as a six-week boot camp class to learn design skills. The top winning designs will get the funding to get their space built at their schools. Winning entries will be announced soon.   The NIH library is holding a series of events relating to healthcare to celebrate the week, including a special symposium on June 20: “Making Health: Inspiring Innovative Solutions for Research and Clinical Care” and another event at Georgetown University on June 23 that will showcase various organizations involved at the intersection of making and healthcare.   Susannah Fox, Chief Technology Officer at the U.S. Department of Health and Human Services (HHS), will give a keynote speech on how the democratization of technology can improve health. She also posted an article on Medium last week, about the department’s work in this area.   The article featured the image above, of the first makerspace designed specifically for healthcare at the Galveston University of Texas Medical Branch hospital. It’s located on a patient floor, to help nurses and patients develop and build customized objects to improve their care.   The NIH library will hold a series of classes and demos the rest of the week, including: How to print from the NIH library’s newest 3D printer Converting medical images from CT and MRI scans into 3D printable models using 3D-Slicer and ZBrush from Pixelogic Creating protein models using Chimera and how to prepare them for printing using Meshmixer An introduction to SOLIDWORKS Classes on how to use open source software such as Blender and OpenSCAD

Schools and communities are encouraged to host their own events, using the hashtags weekofmaking and nationofmakers to promote them.  
What are you doing to celebrate the national week of making?
 

3D Printing to Help Lower Maternal and Fetal Deaths

In spite of significant improvements in the field of medicine, thousands of women die each year during child birth. In fact, the number of maternal deaths in the United States has increased from 7.2 deaths per 100,000 live births in 1987 to 17.8 deaths per 100,000 live births in 2011. This worsening trend has been a matter of great concern within the medical community. Healthcare professionals and scientists are looking for newer methods to lower the incidence pregnancy-related deaths, and three-dimensional (3D) medical printing and bioprinting are playing an important role.   The 3D Placenta
Understanding the anatomy and physiology of the placenta is challenging as the organ appears only after the woman is pregnant. Many obstetricians and gynecologists lack the expertise required to promptly anticipate, diagnose and treat placenta-related conditions such as preeclampsia, which is the leading cause of maternal death across the globe.   Researchers at Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Health System and the Tissue Engineering & Biomaterials Laboratory, Fischell Department of Bioengineering at the University of Maryland have created a 3D printed placenta that replicates the complex cellular structures and extracellular matrices of the real human version. Scientists are using these 3D models to study special cells known as trophoblasts that bind to the uterine wall and promote the development of blood vessels required to nourish the fetus in the womb. Scientists predict that improper migration of the trophoblasts causes preeclampsia.   For a study published in the April, 2016, edition of American Chemical Society's Biomaterials, Science and Engineering journal, researchers injected a peptide, known as the epidermal growth factor, into a 3D printed placenta and observed its impact on trophoblast migration. Unlike 2D models that only allowed scientists to observe the movement of the cells, the 3D models helped researches analyze how the cells moved, and how they came together to bind to the uterine wall. The epidermal growth factor did produce some encouraging results and is currently undergoing further testing.   Overcoming Fetal Abnormalities
The use of 3D printing has not been limited to preeclampsia and maternal well-being. A team of surgeons at Colorado Fetal Care Center used 3D medical printing technology to create a specific model of the fetus based on the MRI scans of the mother's uterus. The model helped them understand the infant's myelomeningocele and treat it in utero. As per the National Institutes of Health, this intervention can significantly lower the need for cerebral shunts after birth.   In another case, doctors at University of Michigan’s C.S. Mott Children's Hospital used 3D medical printing technology to help deliver a baby with a walnut-sized lump around the nose that would prevent it to breathe after birth. The surgeons created a 3D model of the fetus's head using dimensions from the MRI scans of the uterus. Analysis of this model helped the surgeons choose the right method for delivery.   Further advances in 3D medical printing and bioprinting will help scientists and doctors develop innovative solutions to treat and prevent pregnancy-related complications. In the near future, this technology will become more accessible to everyone and will lead to lower maternal and fetal mortality rates.

mattjohnson

mattjohnson

 

BiologicModels uses 3D Printing to put Protein Models in Customers' Hands

Casey Steffen has a background in video game animation and a Master’s degree in biological visualization but he describes himself as a “medical illustrator and a type I diabetic” in the video introduction to his RocketHub crowdfunding page, that raised money to support a project to make educational models of the protein hemoglobin, that has 4,659 atoms. The proposal was completely funded two years ago.   The project addresses confusion surrounding the common hemoglobin A1c (HbA1c) test. Unlike the blood sugar measurement, it represents the average over three months (the lifetime of a red blood cell) of the fraction of bloodstream HbA1c (hemoglobin with sugar molecules attached as shown in the the models). If this number is above a certain range (7% for people with diabetes, according to WebMD) it means blood sugar has not been well controlled. A higher number is indicative of prolonged elevated blood sugar. It’s used for long term tracking of how patients manage their blood sugar.   The hemoglobin models provide patients with a physical and visual representation of what the test means, so they can better understand what’s going on in their body, and why it’s important to control their blood sugar. An elevated blood sugar causes damage to certain tissues, like the eyes and blood vessels in the feet, slowly, over a long period of time.   To get the hemoglobin models right, Steffen collaborated with Patricia Weber, a structural biologist and Mary Vouyiouklis, his endocrinologist. When Steffen met Michael Gulen, who was a prototype development director at a company that makes action figures, a collaboration was born. Wired Magazine covered their story about five years ago.   Steffen’s company, Biologic Models, makes models of proteins for scientific and medical education. The physical models of proteins are created from x-ray crystallography data sets. For some of the models, like the hemoglobin ones, 3D printing from a Form 1 3D printer serves to make the prototype for plaster molds, to finally cast the models in silicone.   The company partners with the 3D printing company Shapeways to print several proteins including the Zika virus shell and the Ebola virus ectodomain (the part that fuses to the cell membrane).   Digital preview of Zika virus shell
Ebola virus ectodomain  Customers can also choose to have the company provide a plan for 3D printing their favorite protein by providing its PDB ID from the protein data bank, a resource of protein structure x-ray crystallography data. Customers can then have it 3D printed or print it themselves.   Based on a post from formlabs.
 

3D Printing a Spine Model to Help a Fellow Doctor with Low Back Pain

I was recently contacted by another doctor who asked if I could help him to create a 3D printed replicate of his spine to visualize pinched nerves in his low back and aid with planning a future back surgery. In order to work this doctor has to stand for long hours while performing surgical procedures. Excruciating low back pain had limited his ability to stand to only 30 minutes. As you can imagine, this means he couldn't work. Things only got worse after he had low back surgery.   A CT scan of his lumbar spine (the low back portion of the spine) was performed. It showed that his fifth lumbar vertebra was partially sacralized. This means it looked more like a sacral vertebra than a lumbar vertebra. Was this causing his problem? On the image slices of the CT scan it was difficult to tell.   How the Spine is Organized
First, a word about the different vertebrae (bones) in the spine. There are four main sections of spinal bones. The seven cervical vertebrae are in the neck and support the head. They are generally small but flexible, and allow rotation of the head. The 12 thoracic vertebrae are in the chest. Their most distinctive characteristic is they all have associated ribs, which make up the rib cage. The five lumbar vertebrae are in the low back. These are large and strong, and designed for supporting lots of weight. They do not have associated ribs. The five sacral vertebrae are in the pelvis. In adults, they are fused together and effectively form a single bone, the sacrum. The coccyx, or tailbone, which is a tiny bone at the bottom end of the vertebral column, can be considered a fifth spinal section. This is the bone that is often injured when you fallen your behind. Figure 1 shows the different sections of the vertebral column.  
Figure 1. Sections of the vertebral column. Source:aimisspine.com   Although the bones of the individual sections of the spine usually have their own unique features, it is not uncommon for vertebrae in one section to have features typically associated with an adjacent section. This is particularly true of the vertebrae that are immediately adjacent to a neighboring section. These hybrids are a mix between both sections, are called transitional vertebrae. Do you recall that only thoracic vertebrae have associated ribs? Occasionally the highest lumbar vertebra, L1, will have tiny ribs attached to it. This is a normal variant and is usually harmless. Radiologists who are interpreting medical scans need to be careful to not confuse an L1 vertebra which may have tiny ribs for the adjacent T12 vertebra which normally has ribs. Similarly, the lowest lumbar vertebra, L5, which is normally unfused, can exhibit fusion. As you recall, fusion is a characteristic of sacral vertebrae.   A Congenital Spine Abnormality
This was the situation with our physician. His lowest lumbar vertebra, L5, has partially fused with S1, the highest sacral vertebra. This condition is congenital. He has had it all his life. The fusion can have the side effect of creating a very narrow bony canal through which the L5 nerve roots can exit the spine. Normally, these nerve roots would have much more space as a large gap would exist between the normally unfused L5 and S1 vertebrae. Was this the problem? The CT scan showed the sacralization of L5, but it was difficult to get a sense for how tight the holes through which the nerves exit, the neural foramina, were. See Figures 2 and 3.     Figure 2: Coronal CT image through the L5 and S1 vertebral bodies. Is this the cause of the problem? It is very difficult to get an intuitive sense of what is going on with these flat image slices.     Figure 3: Image from Figure 2 with the neural foramina marked.   Seeking help through Embodi3D
The doctor contacted me through the Embodi3D website and asked if I could create a 3D model design and 3D print of his lumbar spine to help him and his team of spinal specialists understand his unique anatomy better. Of course, I was happy to help. The CT scan was of high quality and allowed me to extract the bones and metallic spinal fusion implants with little trouble. The individual nerves, however, were very difficult to see even on a high quality CT scan. I had to manually segment them one image at a time, which was a very tedious and time-consuming process. After fusing everything together, I had a very good digital model of the lumbar spine. I created some photorealistic 3D renders to illustrate the key findings.   Figures 4 and 5 show the very tight L5-S1 bony neural foramina. The inter-vertebral disc sits within the gap between the two vertebral bodies, and you can see how a lateral bulge from this disc would significantly pinch these exiting nerve roots.     Figure 4: Right L5 nerve root (yellow) exiting the tight neural foramen caused by the fused L5 and S1 lateral processes.     Figure 5: Left L5 nerve root (yellow) exiting the tight neural foramen caused by the fused L5 and S1 lateral processes.   Additionally, I showed that a bone screw that had been placed during the last surgery had partially exited the L4 vertebral body and was in very close proximity, and probably touching, the adjacent nerve root. Ouch! This can be seen in Figure 6. This may explain why the pain seem to get worse after the last surgery.     Figure 6: Transpedicular orthopedic screw which has partially exited the L4 vertebral body and is in very close proximity or in contact with the right L3 nerve root.   The Final 3D Printed Spine Model
The doctor wanted his spine 3D printed in transparent material, so I used a stereolithographic printer with transparent resin. I printed the spine in two separate parts that could be separated and fit together. When separated, the nerves exiting through the neural foramina can be inspected from inside the spinal canal, which gives an added degree of understanding.   Final pictures of the transparent 3D printed model are shown below.                         I just recently shipped the model to this doctor and don't yet know how his back problems will be resolved. With this 3D printed model in hand however, he will be able to have much more meaningful discussions with his spinal surgeons about the best way to definitively fix his low back problems. I hope that the 3D printed spine model will literally help to get this good doctor back on his feet again.

Dr. Mike

Dr. Mike

 

3D Printing Helps Treat Broken Bones

Broken bones can be immensely painful and debilitating. Broken bones account for over 6.8 million medical treatments each year at various hospitals, emergency rooms and doctor's offices across the United States. Most minor fractures can be treated using casts, braces and traction devices. Occasionally, surgeons also replace the broken or missing bone fragments using bone grafts. Grafts may be derived from the patient's own body (autografts) or from a donor (allografts).   Although autografts and allografts have been in use for decades, they have several disadvantages. It is often difficult to find a compatible bone fragment. Furthermore, these implants degenerate with time, and most patients require a replacement surgery after 10 or 15 years. This surgery can worsen pain and lead to other complications, especially in the elderly.   Three-dimensional Bone Grafts
To overcome some of these deficiencies, researchers at University of Toronto, under the supervision of Professor Bob Pilliar, began looking for special compounds that can be used to form artificial bone grafts and fragments. They discovered calcium polyphosphate that makes up approximately 70 percent of a natural bone. Mihaela Vlasea, a mechatronic engineer at University of Waterloo, then developed an indigenous 3D printer that uses ultraviolet rays and light-reactive binding agents to fuse the calcium polyphosphate molecules into bone fragments. The implant has a porous structure that allows the real tissue to grow over time. Subsequently, the implant is broken down naturally in the patient's body. Apart from treating fractures, this technology can also be used to produce replacement joints and cartilages for arthritis patients.   The porous nature of the 3-D printed grafts, however, makes them brittle and unmanageable at times. Researchers at Nottingham Trent University are working to further strengthen the bone implants by growing unique crystal structures within the bone scaffold at sub-zero temperatures. This technique may also reduce the time required to print the bone fragments.   Talus Bone Surgeries
Some healthcare professionals are already using 3D printing technology in patients. Dr. Mark Myerson, an orthopedic surgeon at Mercy Hospital, Baltimore, relies on 3D printing services offered by 4Web Medical to create customized ankle bones that can be implanted into the patient's feet to replace a broken ankle. He has used this technology to help patients with talus bone fractures, who tend to lose blood circulation in the area. Consequently, the bone dies and begins to crumble leading to a flat and painful ankle. 4Web Medical uses CT scans of the opposite (normal) foot to get the dimensions and the specific shape of the bone. It feeds this information into a computer and uses a 3D printer to produce a compatible implant. Dr. Myerson places these implants in the patient's ankles. The intervention has helped patients regain 50 to 75 percent of their ankle function.   The field of 3D bioprinting and medical 3D printing is still in its infancy. Scientists across the globe are investing significant amount of time, money and effort to develop more efficient and cost-effective techniques. Many products are undergoing clinical trials. Three-dimensional bones will soon be accessible to millions of patients suffering from bone fractures and bone defects.   Image Credit : mdmercy.com

mattjohnson

mattjohnson

 

Formlabs Form 2 3D Printer Review: A Great Buy for Medical 3D Printing

Hello Dr. Mike here and welcome to my review of the Form 2 3D printer by Formlabs. The Form 2 is Formlabs newest desktop stereolithography printer. It is a great asset for medical 3D printing with many user friendly features and an acceptable price.   My full review is included here in both video and text. You can download the splenic artery aneurysm file shown in the video. The Form 2 printer is available to purchase. The previous generation Form 1+ can be purchased on Amazon. However, the Form 2 represents a better value.   Stereolithography is a 3D printing method where a laser hardens liquid resin in a vat one layer at a time. This is different from fused deposition modeling (FDM) where plastic filament is heated and extruded through a nozzle to make the 3-D print. Stereolithography is capable of producing highly detailed 3-D prints with a layer thickness of 25 µm. This is four times finer than the 100 µm layer thickness for the latest MakerBot Replicator.     Form 2 Unboxing and Set Up
My Form 2 arrived in a series of boxes at my front door. I do a lot of 3-D printing so I ordered extra bill platforms and resin tanks. Resin cartridges came in their own separate box. As you can see I also ordered extra resin cartridges.   The Form 2 printer came in a large box that contained a quick start guide, another resin tank, build platform, and accessories. The printer itself was well secured in the box and had convenient pullout handles. Once the printer was in its final location next to my old form 1+ printers I had to remove the extensive tape used to secure the printer during shipping. A thin plastic protective film is present over the touchscreen. I tend to get my printers dirty so I left this in place.   Next I plugged in the printer, and it immediately started to initialize. The printer immediately gave me a warning that it was not level. I had the printer set up on the same table that my older Form 1+ printers were on but they do not have a leveling sensor, and apparently I have been printing with them leveled all this time.   Fortunately leveling the Form 2 printer is very easy. It has screw type legs that can be raised or lowered, much the same way that restaurant tables can be adjusted. A simple disc like leveling tool comes with the printer and can be used to adjust the legs easily. Adjust the legs until the leveling circle is within the bull's-eye shown on the main screen. This is a pretty cool feature. The printer is now ready to print.   You can connect to the printer over a USB cable, but I prefer Wi-Fi as my main computer is in a different room than the printer. To do this turn on Wi-Fi settings and select your network. The older Form 1+ printer resin came in bottles that you had to pour into the resin tank. The Form 2 printer comes with a printer cartridge that slides into the back of the printer. When you're resin tank is low the printer automatically fills the tank from the cartridge. This is quite handy especially with larger prints that may require the tank to otherwise be refilled in the middle of a print.   A new resin tank fits easily into the printer and snaps in place. Resin tanks are considered to be consumables and are thrown out after about 2 L of printing when the floor of the tank becomes foggy and starts to inhibit the laser. Each resin tank comes with a wiper arm which snaps into place. This wiper arm is a new feature for the form to and can prevent cured resin from sticking to the bottom of the tank, a situation that in older printers could cause total print failure. With the new wiper arm this situation is much less likely to happen.
The new build platform slides and easily.   Inserting a resin cartridges a snap. There's a cap on the top of the resin cartridge that should be opened to allow resin to drain into the printer. At this point the printer should be ready to print. You can see that the display shows that a resin tank and cartridge have been inserted. Also the display indicates the internal temperature. During printing a heater will warm the internal temperature to the appropriate level to achieve best results.   This is the result of my first print, which is a hollow vascular model. This is my second print which is a section of lumbar spine printed in clear resin.   This is the new removal tool, which is used to remove the three printed model from the build platform. Form labs has recently released firmware update which makes removal of the parts much easier. The removal tool can slip under the edges and with gentle twisting will separate from the bill platform. This is a significant improvement over the older support structure. It is also an example of how form labs continues to improve its products even after sale through the use of software upgrades.   Once removed from the bill platform the support structures need to be removed. This can be done either before or after cleaning the part in an alcohol bath. The model will be covered in sticky resin so you need to wear disposable gloves and be able to clean the parts with alcohol, which requires decent ventilation. Using the flush cutters that come with the kit the base can be cut and the support structures can be gently worked off the model.   Here's an example of a splenic artery aneurysm model that I printed and clear. You can see that the quality of the print is excellent. If you would like to 3-D print this model yourself I have made it free for download at the link in the description below. It is available in both STL and Form labs Preform software format. This is an example of some of the parts that are produced with the Form 2 printer. As you can see they are a very high quality.   Purchase and material options, and other features
The Form 2 comes with many upgrades and improvements over its predecessor, the Form 1+. This includes: Larger build volume, 14.5 x 14.5 x 17.5 cm Heated tank slide peeled resin wiper dust protection automated resin system wireless connectivity
The cost of the Form 2 printer is $3499, which includes the printer, resin tank, build platform, finishing kit, and one liter of resin of your choice. The printer comes with a one-year warranty.  
Standard resins are available in black, gray, white, and clear. Functional resins include flexible, castable, and tough. A biocompatible resin is available for dental purposes.   Form 2 For Medical 3D Printing Review Conclusion
The Form 2 is an outstanding desktop stereolithography 3-D printer for the price. It produces very high quality parts. It is expensive for a consumer grade desktop printer but is significantly cheaper than other printers used for medical purposes. The free Preform software makes setting up a print easy. Cons of the printer are it is messy, requiring gloves and isopropyl alcohol to clean the sticky resin from the parts. This can be a problem in a poorly ventilated office environment. Also the build volume, while larger than its predecessor, is still smaller than many FDM printers.
Overall the form two is an outstanding value and I recommend it highly particularly for medical 3-D printing. Thank you very much for watching if you like this video subscribe below and happy 3-D printing.

Dr. Mike

Dr. Mike

 

Medical 3D Printing for Skull Surgery

A company in Brazil called Artis Tecnologia has developed medical 3D printing technologies to aid in skull resection surgery. They demonstrated their techniques on a volunteer patient who received surgery for free at the university hospital of the Federal University of São Paulo (UNIFESP). They published an article about it two weeks ago in the International Journal of Computer Assisted Radiology and Surgery.   Their technologies allow the removal of a skull tumor and the implantation of a prosthesis in a single surgery. The company works with the doctors to plan the surgery and make the mold for the prosthesis. In this case the company donated the mold and the surgical navigator for the computer assisted surgery (CAS).  
Planning of the prosthesis  Surgical planning
First, the doctors take a CT scan of the patient, following a specific protocol so that it is precise enough to make the personalized mold. The scans are imported into the company’s EximiusMed software and which is compatible with the surgical navigator. The company is responsible for deciding on the surgery margin, and providing an image of the prosthesis, which is approved by the surgeon. The planning and production of the mold takes four days.   Mold production
The personalized mold is made with Magics software from Materialise, a company from Belgium. They make the mold for the prosthesis as well as a model of the bone fault, with submillimeter precision, using a 3D printer from 3D Systems, which uses layer-by-layer manufacturing in layers 0.16 inches thick. It is made from a plaster-like material, and finished with an insulator on the inside and scratch proof finish on the outside. Then, the mold and bone fault are packed in blister packaging, sealed with Tyvek, and sterilized by ethylene oxide, before shipping.   Images of the mold  Making the prosthesis
The prosthesis, made from PMMA during surgery, is created using a hand press as shown in the video.     The PMMA in plastic phase undergoes a slight contraction, and using 20% extra PMMA and a press, ensures the correct size for the prosthesis. The extra material drains out of the mold and can be easily removed from the prosthesis. The mold also absorbs heat from the exothermic reaction. It is pressed until polymerization is complete which takes ten to twenty minutes. Finally the prosthesis is washed generously with saline solution.   Placing the prosthesis on the skull fault  The surgeon decides how to perforate and attach the prosthesis, in this case with titanium clips
The clips are used to stabilize the prosthesis but not hold it in place. The prosthesis should overlap the edges of the skull fault as shown in the figure so it does not slip into the cranial cavity.     Images after surgery
 

How to Create a Blog on Embodi3D

About Blogs on Embodi3D
Select members of the Embodi3D community may be given the ability to create a blog and publish blog articles on the Embodi3D website. Blogging for new member is turned off by default as a spam reduction measure. Longtime members who have reliably contributed to the Embodi3D community through discussions in the forums, comments, or file sharing can ask to have blogging enabled on their accounts. Blog articles are featured on the Embodi3D.com homepage and are promoted using the Embodi3D social media accounts (Twitter, Facebook, Google+, LinkedIn, etc) and may provide significant exposure for the blogger.   Please DO:
1) Share your biomedical 3D printing work
2) Share you insights on current biomedical 3D printing topics and news
3) Help others with tutorials and shared 3D printable files   Please DON'T:
1) Post spam
2) Use the blog to promote outside commercial interests
3) Post hateful or disrespectful content, or use bad language.   To request blogging on your account, send a message to embodi3d via the Messenger in the top navigation bar.
Step 1: Start Creating your Blog
Once blogging is enabled on your account, you can create a blog. From the Blogs tab, click on the Manage Blogs button.     Step 2: From the Manage Blogs page, click "Create a Blog" Button     Step 3: Agree to the terms for having a blog
Basically this just says you won't use your blog for evil purposes.   Step 4: Configure the basics of your blog
Enter your blog name and description. Under Blog type, select "Local Blog." Embodi3D does not support external blogs.   Step 5: Set up the detailed parameters of your blog.
The default settings are fine more most people. Click "Save" when you are done   Step 6: Create your first blog post
There are two ways you can create a blog entry.
Method 1: From the Manage Blogs page clicking on Options and select Post New Entry, as shown below.
Method 2: From the Blogs section, click on the Add Entry button.       Once you have started writing a post you will need to know how to create links, add images and add Youtube videos.   Instructions for Creating Links
To get a link, first, using your cursor highlight the text within the article, then in the editor tool bar click the chain icon with a + on it. This will then prompt you for the web page link. In the URL field enter the web site address. For example, http://yahoo.com. then click OK.   Working with images
Each article needs an entry image. Entry Image is located above the editor tool bar where it says "Entry Image". Click Browse... and then find the image on your local computer.   For other images you will need to do a 2 step process.
1) First you will need to click on "Create New Gallery Album" which is located just under "Entry Image" . In this album put the images you want to include in the article.
2) Then when you get to a place in the article where you need an image click on "My Media" in the editor. Then select Gallery Images and select the previously uploaded images you put in this gallery.   Inserting Youtube Videos
The blogging editor only supports Youtube videos. To get a video to show and play within the blog post it requires just a link. When you find a video you like on Youtube click on Share instead of Embed. The Youtube link will look something like this: 'https://youtu.be/c3LgY0W5QSo   Copy the Youtube link and then paste it into your blog post here on emobodi3d.com. It usually works best if there is one line space above and one line space below the Youtube link. If the link is pasted with text surrounding it the link may not be recognized as a video.   That's it! Congratulations and welcome as an Embodi3D blogger! 

embodi3d

embodi3d

 

3D Bioprinting to Help Manage Gum Disease

Three-dimensional medical printing and bioprinting technologies are offering innovative solutions to dentists, orthodontists and other professionals treating complex gum diseases and related oral health problems. These treatments may benefit a significant portion of the 67.4 million American adults that suffer from such conditions.   Gum disease, also known as periodontitis, is characterized by swollen and bleeding gums, persistent bad breath, and loose teeth. If untreated, the condition can lead to serious complications including tooth loss. Many patients with gum diseases may require bone or tissue grafting. Traditionally, bone grafting involves implanting natural or synthetic bone fragments into the affected gums and allowing them to grow in a controlled manner to replace the lost teeth. Patients with damaged gums may require soft tissue grafting. During the process, a dentist will remove tissues from another part of the mouth and place them in the gums to treat them.   Bioprinting Bones and Gums
While such treatments may be effective, the challenge lies in finding compatible bone and tissue fragments. Additionally, the transplanted parts may get reabsorbed without producing the desired results. Researchers at Griffith University's Menzies Health Institute in Queensland, Australia, have created an novel solution by regenerating gum and bone tissues using 3-D bioprinters. They have trialed these components in animal models, such as rats, sheep and pigs, and are now focusing on clinical trails in humans. The technology may soon be available for commercial use.   As part of the study, the Australian researchers scanned gums and oral cavities of animals and used the images to obtain specific dimensions of the missing parts. They created computer-aided designs and relied on a 3-D bioprinter to create the models. Cells, extra-cellular matrix and other components of the targeted tissue were fed into the bioprinter, which was maintained at an optimal temperatures for tissue development.   The Benefits of BioPrinting
The researchers at Griffith's university have created scaffolds with bone and ligament compartments, and the technology has allowed them to recreate the entire architecture of the missing tissue with unprecedented accuracy. The 3-D printed tissue fragment can be customized according to the patient's specific needs. The researchers believe that this technology will eliminate the need for compatible bone and tissue grafts from the patient's own body. As a result, the surgical intervention will be easy to perform, less invasive, and cost-effective.     The bioprinting industry is evolving at a rapid pace. Researchers from other fields of medicine are also benefiting from this technology. It is only a matter of time before these printers become accessible to millions of patients with gum diseases and other oral conditions.

mattjohnson

mattjohnson

 

How to Upload and Share 3D Printable Files on Embodi3D

If you have a 3D printable file you would like to share with the Embodi3D community the process is very easy.   1) First, get your files ready. STL files are best and have good compatibility with most printers. Make sure your files are of good quality as Embodi3D's file library contains high quality files. If you think you files may have errors in them, you can check them using the Inspector function in MeshMixer. Be sure to compress your files if possible using a compression program like WinZip.   2) Take photographs or screenshots of your model, and have the image files ready to upload.   3) Now we are ready to upload. From anywhere in the Embodi3D site, click on the Marketplace nav menu. Make sure you are logged into your member account.
  4) Click the Upload File button in yellow.
  5) Select a category that most appropriately describes your file.
  6) Upload you files. Click on the "Click to Upload Files" button and navigate to the folder that contains the files you want to upload. Please compress your files using a file format like ZIP beforehand to make downloading easier for users. Uploads are limited to 30 MB in size, so compressing large STL files is important. You can upload a file as large as 100 MB if compression is used.
  7) Upload pictures or screenshots. Click the button and navigate to the folder that contains pictures of your model.
  8) Add details about your files. Put in a descriptive title. This is very important to attract people to your file page. Type in descriptive file tags to help search engines find your files. In the Description section, describe your model. You can even embed youtube links. To include media that you have uploaded to your Gallery click the My Media button. Choose whether you want the file to be free or paid. If you want the file to be a paid file (i.e. downloadable for a fee), see the selling page for more information on how to sell your files. Finally, choose a license type. Free files are distributed with Creative Commons licenses. Choose the one that you like the the best and click "Add Submission."     9) View your newly shared file! Thanks a bunch! By sharing your file you are helping other Embodi3D members with research, education, and a variety of other worthy causes.     If you would like to download the splenic artery aneurysm file shown in this tutorial, you can do so here.

Dr. Mike

Dr. Mike

×