Jump to content
  • entries
    29
  • comment
    1
  • views
    15,942

Impact of 3D Printing on Stem Cell Research and Therapy


mattjohnson

1,245 views

blog-0056321001467893489.jpg

Stem cell research has been plagued with innumerable controversies and ethical questions. Most researchers agree that these undifferentiated embryonic cells have the potential to treat serious conditions such as heart disease, diabetes, stroke, arthritis, and Parkinson’s disease. They may also help evaluate the impact of new drugs and therapies at the cellular level.

 

Scientists, however, must be able to differentiate the stem cells consistently within a controlled environment to meet their specific needs. Furthermore, obtaining these cells from five to six day old embryos may not be acceptable to everyone. The scientific community is, therefore, looking at three-dimensional (3D) bioprinting to overcome some of the obstacles associated with stem cell research and to make the treatments more accessible, efficient and safe.

 

3D Printed Stem Cells
There have been multiple attempts to print stem cells in the laboratory. Nano Dimension, an Israel-based technology firm, recently filed a patent for 3D printed stem cells. The company collaborated with Accellta, which is known for its stem cell suspension and induced differentiation technologies. Researchers from both organizations worked together to accelerate the printing process with the help of a specially adapted 3D printer that can print billions of high quality stem cells per batch. Nano Dimension believes that its technology can benefit pre-clinical drug discovery and testing, toxicology assays, tissue printing, and transplantation.

 

Previously, scientists at Heriot-Watt University in Edinburgh created a cell printer that produced living embryonic stem cells. The printer, a modified CNC machine, was fitted with two bio-ink dispensers. The machine dispensed layers of embryonic stem cells and nutrient media in a specific pattern that was ideal for differentiation.

 

In another study, researchers at Tsingua University in China and Drexel University in Philadelphia developed homogenous embryoid bodies using the 3D printing technology. The process mimicked early stages of embryo formation that involves clumping of the pluripotent stem cells. Researchers of this study believe that these little building blocks will pave way for the creation of larger, heterogeneous embryoid bodies.

 

Recent Applications of 3D Bioprinting
Bioprinted 3D stem cells are also being used to treat a variety of conditions. For example, researchers at ARC Center of Excellence for Electromaterials Science and Orthopedicians at St. Vincent’s Hospital, Melbourne, have developed a 3D printing pen that allows surgeons to create customized cartilage implants from human stem cells during the surgery. The handheld device offers unprecedented control and accuracy. The pen works by extruding the patient’s own stem cells along with a hydrogel. The cartilage tissue has a 97 percent survival rate and can heal the body over time. Researchers believe that this technology can also be used to create skin fragments, muscles and bone structures.

 

As part of the MESO-BRAIN initiative, led by Aston University, scientists differentiated human pluripotent stem cells into specific neurons on a specially defined 3D printed scaffold. The final structure was based on the outer layer of the cerebrum and included nanoelectrodes that enabled electrophysiological function of the neural network. The technology will help develop cellular structures for pharmacological testing and help find cures for complicated mental illnesses such as Parkinson’s disease and dementia.

 

Three-dimensional bioprinting technology is growing at a rapid pace, and scientists are using it to print stem cells as well. The 3D printed versions resemble the actual stem cells in structure and function without some of the drawbacks. Scientists and healthcare professionals across the globe are, therefore, excited about the limitless possibilities of 3D printing and its impact on stem cell research.
Sources:
http://www.tctmagazine.com/3D-printing-news/nano-dimension-accellta-3d-bioprinter-stem-cells/

 

http://www.sciencealert.com/scientists-have-found-a-way-to-3d-print-embryonic-stem-cell-building-blocks

0 Comments


Recommended Comments

There are no comments to display.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...