Jump to content

Search the Community

Showing results for tags '3d printing'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Blogs

  • Embodi3d Test Blog
  • 3D Printing in Medicine
  • Cool Medical 3D-Printing
  • 3D Bio Printing by Paige Anne Carter
  • SSchoppert's Blog
  • Additive Manufacturing in Medicine
  • biomedical 3D printing
  • Bryce's Blog
  • Chris Leggett
  • 3D Models Help Improve Surgical Precision, Reduce Operating Time
  • Desktop 3D Printing in Medical Imaging
  • 3D Printing: Radiology corner
  • The Embodi3D.com Blog
  • descobar3d's Blog
  • 3D Printing in Anthropology
  • Learn to 3D Print: Basic Tools from software to printers
  • 3D printing for bio-medicine
  • 3D Biomedical Printing - by Jacob M.
  • Valchanov's Blog
  • Deirdre_Manion-Fischer's Blog
  • Matt Johnson's Biomedical 3D Printing Blog
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Mike at Medical Models
  • Best embodi3d.com Medical and Anatomic Files

Forums

  • Biomedical 3D Printing
    • Medical 3D Printing
    • Hardware and 3D Printers
    • Software
    • democratiz3D® Support
    • 3D Printable Models
  • General
    • Classifieds, Goods & Services
    • Member Lounge (members only)
    • Announcements

Categories

  • democratiz3D® Processing
  • COVID-19
  • Bones
    • Skull and Face
    • Dental, Orthodontic, Maxillofacial
    • Spine and Pelvis
    • Extremity, Upper (Arm)
    • Extremity, Lower (Leg)
    • Thorax and Ribs
    • Whole body
    • Skeletal tumors, fractures and bony pathology
  • Muscles
    • Head and neck muscles
    • Extremity, Lower (Leg) Muscles
    • Extremity, Upper (Arm) Muscles
    • Thorax and Ribs Muscles
    • Abdomen and Pelvis muscles
    • Whole body Muscles
    • Muscular tumors and sarcomas
  • Cardiac and Vascular
    • Heart
    • Congenital Heart Defects
    • Aorta
    • Head and Neck
    • Chest and abdomen
    • Extremity
    • Miscellaneous
  • Organs
    • Brain
    • Kidneys
    • Lungs
    • Liver
    • Other organs
  • Skin
  • Veterinary
    • Dogs
    • Cats
    • Other
  • Science and Research
    • Paleontology
    • Anthropology
    • Misc Research
  • Miscellaneous
    • Formlabs
    • Anatomical Art
    • Tutorials
    • Other
  • Medical Scans
    • Skull, Head, and Neck CTs
    • Dental, Orthodontic, Maxillofacial CTs
    • Thorax CTs
    • Abdomen and Pelvis CTs
    • Upper Extremity CTs
    • Lower Extremity CTs
    • Spine CTs
    • Whole Body CTs
    • MRIs
    • Ultrasound, General
    • Ultrasound, Fetal
    • Veterinary scans
    • Other

Product Groups

  • Products
  • Premium Services
  • Physical Print Quotes

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Name


Secondary Email Address


Interests

Found 224 results

  1. I receive a lot of inquiries to my account. I'm going to try to share them with the community in the hope that any information that is shared can help many others. A member recently contacted me and asked the following: "Do you have any experience in dicom images by TUI mode in Voluson E10, for print 3d fetus models" Unfortunately, I don't personally have experience with 3D printing ultrasound images. I'm not sure how the slice-by-slice registration will work as ultrasound images are not in fixed orthographic planes. However, I know it must be possible since there is a company that is 3D printing fetuses. http://www.3ders.org/articles/20160118-3d-printed-fetuses-the-hottest-parenting-trend-of-2016.html Anyone in the community have experience with converting ultrasound to STL?
  2. If you are planning on using the democratiz3D service to automatically convert a medical scan to a 3D printable STL model, or you just happen to be working with medical scans for another reason, it is important to know if you are working with a CT (Computed Tomography or CAT) or MRI (Magnetic Resonance Imaging) scan. In this tutorial I'll show you how to quickly and easily tell the difference between a CT and MRI. I am a board-certified radiologist, and spent years mastering the subtleties of radiology physics for my board examinations and clinical practice. My goal here is not to bore you with unnecessary detail, although I am capable of that, but rather to give you a quick, easy, and practical way to understand the difference between CT and MRI if you are a non-medical person. Interested in Medical 3D Printing? Here are some resources: Free downloads of hundreds of 3D printable medical models. Automatically generate your own 3D printable medical models from CT scans. Have a question? Post a question or comment in the medical imaging forum. A Brief Overview of How CT and MRI Works For both CT (left) and MRI (right) scans you will lie on a moving table and be put into a circular machine that looks like a big doughnut. The table will move your body into the doughnut hole. The scan will then be performed. You may or may not get IV contrast through an IV. The machines look very similar but the scan pictures are totally different! CT and CAT Scans are the Same A CT scan, from Computed Tomography, and a CAT scan from Computed Axial Tomography are the same thing. CT scans are based on x-rays. A CT scanner is basically a rotating x-ray machine that takes sequential x-ray pictures of your body as it spins around. A computer then takes the data from the individual images, combines that with the known angle and position of the image at the time of exposure, and re-creates a three-dimensional representation of the body. Because CT scans are based on x-rays, bones are white and air is black on a CT scan just as it is on an x-ray as shown in Figure 1 below. Modern CT scanners are very fast, and usually the scan is performed in less than five minutes. Figure 1: A standard chest x-ray. Note that bones are white and air is black. Miscle and fat are shades of gray. CT scans are based on x-ray so body structures have the same color as they don on an x-ray. How does MRI Work? MRI uses a totally different mechanism to generate an image. MRI images are made using hydrogen atoms in your body and magnets. Yes, super strong magnets. Hydrogen is present in water, fat, protein, and most of the "soft tissue" structures of the body. The doughnut of an MRI does not house a rotating x-ray machine as it does in a CT scanner. Rather, it houses a superconducting electromagnet, basically a super strong magnet. The hydrogen atoms in your body line up with the magnetic field. Don't worry, this is perfectly safe and you won't feel anything. A radio transmitter, yes just like an FM radio station transmitter, will send some radio waves into your body, which will knock some of the hydrogen atoms out of alignment. As the hydrogen nuclei return back to their baseline position they emit a signal that can be measured and used to generate an image. MRI Pulse Sequences Differ Among Manufacturers The frequency, intensity, and timing of the radio waves used to excite the hydrogen atoms, called a "pulse sequence," can be modified so that only certain hydrogen atoms are excited and emit a signal. For example, when using a Short Tau Inversion Recovery (STIR) pulse sequence hydrogen atoms attached to fat molecules are turned off. When using a Fluid Attenuation Inversion Recovery (FLAIR) pulse sequence, hydrogen atoms attached to water molecules are turned off. Because there are so many variables that can be tweaked there are literally hundreds if not thousands of ways that pulse sequences can be constructed, each generating a slightly different type of image. To further complicate the matter, medical scanner manufacturers develop their own custom flavors of pulse sequences and give them specific brand names. So a balanced gradient echo pulse sequence is called True FISP on a Siemens scanner, FIESTA on a GE scanner, Balanced FFE on Philips, BASG on Hitachi, and True SSFP on Toshiba machines. Here is a list of pulse sequence names from various MRI manufacturers. This Radiographics article gives more detail about MRI physics if you want to get into the nitty-gritty. Figure 2: Examples of MRI images from the same patient. From left to right, T1, T2, FLAIR, and T1 post-contrast images of the brain in a patient with a right frontal lobe brain tumor. Note that tissue types (fat, water, blood vessels) can appear differently depending on the pulse sequence and presence of IV contrast. How to Tell the Difference Between a CT Scan and an MRI Scan? A Step by Step Guide Step 1: Read the Radiologist's Report The easiest way to tell what kind of a scan you had is to read the radiologist's report. All reports began with a formal title that will say what kind of scan you had, what body part was imaged, and whether IV contrast was used, for example "MRI brain with and without IV contrast," or "CT abdomen and pelvis without contrast." Step 2: Remember Your Experience in the MRI or CT (CAT) Scanner Were you on the scanner table for less than 10 minutes? If so you probably had a CT scan as MRIs take much longer. Did you have to wear earmuffs to protect your hearing from loud banging during the scan? If so, that was an MRI as the shifting magnetic fields cause the internal components of the machine to make noise. Did you have to drink lots of nasty flavored liquid a few hours before the scan? If so, this is oral contrast and is almost always for a CT. How to tell the difference between CT and MRI by looking at the pictures If you don't have access to the radiology report and don't remember the experience in the scanner because the scan was A) not done on you, or you were to drunk/high/sedated to remember, then you may have to figure out what kind of scan you had by looking at the pictures. This can be complicated, but don't fear I'll show you how to figure it out in this section. First, you need to get a copy of your scan. You can usually get this from the radiology or imaging department at the hospital or clinic where you had the scan performed. Typically these come on a CD or DVD. The disc may already have a program that will allow you to view the scan. If it doesn't, you'll have to download a program capable of reading DICOM files, such as 3D Slicer. Open your scan according to the instructions of your specific program. You may notice that your scan is composed of several sets of images, called series. Each series contains a stack of images. For CT scans these are usually images in different planes (axial, coronal, and sagittal) or before and after administration of IV contrast. For MRI each series is usually a different pulse sequence, which may also be before or after IV contrast. Step 3: Does the medical imaging software program tell you what kind of scan you have? Most imaging software programs will tell you what kind of scan you have under a field called "modality." The picture below shows a screen capture from 3D Slicer. Looking at the Modality column makes it pretty obvious that this is a CT scan. Figure 3: A screen capture from the 3D Slicer program shows the kind of scan under the modality column. Step 4: Can you see the CAT scan or MRI table the patient is laying on? If you can see the table that the patient is laying on or a brace that their head or other body part is secured in, you probably have a CT scan. MRI tables and braces are designed of materials that don't give off a signal in the MRI machine, so they are invisible. CT scan tables absorb some of the x-ray photons used to make the picture, so they are visible on the scan. Figure 4: A CT scan (left) and MRI (right) that show the patient table visible on the CT but not the MRI. Step 5: Is fat or water white? MRI usually shows fat and water as white. In MRI scans the fat underneath the skin or reservoirs of water in the body can be either white or dark in appearance, depending on the pulse sequence. For CT however, fat and water are almost never white. Look for fat just underneath the skin in almost any part of the body. Structures that contained mostly water include the cerebrospinal fluid around the spinal cord in the spinal canal and around the brain, the vitreous humor inside the eyeballs, bile within the gallbladder and biliary tree of the liver, urine within the bladder and collecting systems of the kidneys, and in some abnormal states such as pleural fluid in the thorax and ascites in the abdomen. It should be noted that water-containing structures can be made to look white on CT scans by intentional mixing of contrast in the structures in highly specialized scans, such as in a CT urogram or CT myelogram. But in general if either fat or fluid in the body looks white, you are dealing with an MRI. Step 6: Is the bone black? CT never shows bones as black. If you can see bony structures on your scan and they are black or dark gray in coloration, you are dealing with an MRI. On CT scans the bone is always white because the calcium blocks (attenuates) the x-ray photons. The calcium does not emit a signal in MRI scans, and thus appears dark. Bone marrow can be made to also appear dark on certain MRI pulse sequences, such as STIR sequences. If your scan shows dark bones and bone marrow, you are dealing with an MRI. A question I am often asked is "If bones are white on CT scans, if I see white bones can I assume it is a CT?" Unfortunately not. The calcium in bones does not emit signal on MRI and thus appears black. However, many bones also contain bone marrow which has a great deal of fat. Certain MRI sequences like T1 and T2 depict fat as bright white, and thus bone marrow-containing bone will look white on the scans. An expert can look carefully at the bone and discriminate between the calcium containing cortical bone and fat containing medullary bone, but this is beyond what a layperson will notice without specialized training. Self Test: Examples of CT and MRI Scans Here are some examples for you to test your newfound knowledge. Example 1 Figure 5A: A mystery scan of the brain Look at the scan above. Can you see the table that the patient is laying on? No, so this is probably an MRI. Let's not be hasty in our judgment and find further evidence to confirm our suspicion. Is the cerebrospinal fluid surrounding the brain and in the ventricles of the brain white? No, on this scan the CSF appears black. Both CT scans and MRIs can have dark appearing CSF, so this doesn't help us. Is the skin and thin layer of subcutaneous fat on the scalp white? Yes it is. That means this is an MRI. Well, if this is an MRI than the bones of the skull, the calvarium, should be dark, right? Yes, and indeed the calvarium is as shown in Figure 5B. You can see the black egg shaped oval around the brain, which is the calcium containing skull. The only portion of the skull that is white is in the frontal area where fat containing bone marrow is present between two thin layers of calcium containing bony cortex. This is an MRI. Figure 5B: The mystery scan is a T1 spoiled gradient echo MRI image of the brain. Incidentally this person has a brain tumor involving the left frontal lobe. Example 2 Figure 6A: Another mystery scan of the brain Look at the scan above. Let's go through our process to determine if this is a CT or MRI. First of all, can you see the table the patient is lying on or brace? Yes you can, there is a U-shaped brace keeping the head in position for the scan. We can conclude that this is a CT scan. Let's investigate further to confirm our conclusion. Is fat or water white? If either is white, then this is an MRI. In this scan we can see both fat underneath the skin of the cheeks which appears dark gray to black. Additionally, the material in the eyeball is a dark gray, immediately behind the relatively white appearing lenses of the eye. Finally, the cerebrospinal fluid surrounding the brainstem appears gray. This is not clearly an MRI, which further confirms our suspicion that it is a CT. If indeed this is a CT, then the bones of the skull should be white, and indeed they are. You can see the bright white shaped skull surrounding the brain. You can even see part of the cheekbones, the zygomatic arch, extending forward just outside the eyes. This is a CT scan. Figure 6B: The mystery scan is a CT brain without IV contrast. Example 3 Figure 7A: A mystery scan of the abdomen In this example we see an image through the upper abdomen depicting multiple intra-abdominal organs. Let's use our methodology to try and figure out what kind of scan this is. First of all, can you see the table that the patient is laying on? Yes you can. That means we are dealing with the CT. Let's go ahead and look for some additional evidence to confirm our suspicion. Do the bones appear white? Yes they do. You can see the white colored thoracic vertebrae in the center of the image, and multiple ribs are present, also white. If this is indeed a CT scan than any water-containing structures should not be white, and indeed they are not. In this image there are three water-containing structures. The spinal canal contains cerebrospinal fluid (CSF). The pickle shaped gallbladder can be seen just underneath the liver. Also, this patient has a large (and benign) left kidney cyst. All of these structures appear a dark gray. Also, the fat underneath the skin is a dark gray color. This is not in MRI. It is a CT. Figure 7B: The mystery scan is a CT of the abdomen with IV contrast Example 4 Figure 8A: A mystery scan of the left thigh Identifying this scan is challenging. Let's first look for the presence of the table. We don't see one but the image may have been trimmed to exclude it, or the image area may just not be big enough to see the table. We can't be sure a table is in present but just outside the image. Is the fat under the skin or any fluid-filled structures white? If so, this would indicate it is an MRI. The large white colored structure in the middle of the picture is a tumor. The fat underneath the skin is not white, it is dark gray in color. Also, the picture is through the mid thigh and there are no normal water containing structures in this area, so we can't use this to help us. Well, if this is a CT scan than the bone should be white. Is it? The answer is no. We can see a dark donut-shaped structure just to the right of the large white tumor. This is the femur bone, the major bone of the thigh and it is black. This cannot be a CT. It must be an MRI. This example is tricky because a fat suppression pulse sequence was used to turn the normally white colored fat a dark gray. Additionally no normal water containing structures are present on this image. The large tumor in the mid thigh is lighting up like a lightbulb and can be confusing and distracting. But, the presence of black colored bone is a dead giveaway. Figure 8B: The mystery scan is a contrast-enhanced T2 fat-suppressed MRI Conclusion: Now You Can Determine is a Scan is CT or MRI This tutorial outlines a simple process that anybody can use to identify whether a scan is a CT or MRI. The democratiz3D service on this website can be used to convert any CT scan into a 3D printable bone model. Soon, a feature will be added that will allow you to convert a brain MRI into a 3D printable model. Additional features will be forthcoming. The service is free and easy to use, but you do need to tell it what kind of scan your uploading. Hopefully this tutorial will help you identify your scan. If you'd like to learn more about the democratiz3D service click here. Thank you very much and I hope you found this tutorial to be helpful. Nothing in this article should be considered medical advice. If you have a medical question, ask your doctor.
  3. Version 1.0.0

    824 downloads

    This is my best selling model for 2019. Download, print, assemble, enjoy. Merry Christmas Originally modded as an engagement ring box, it became really popular birthday gift for the colleague from heart-related departments. I'm selling one of those models for 35$ I'm always bringing few, when I'm going on conference. Really nice gift. I'm printing those with Silk PLA. The metalic colors looks fantastic. I'm using several support blockers for the atrii, because this negates the artefacts and makes the whole upper part hollow. It requires some experience... Slice thickness: 0,15mm Infill: 30% gyroid Circular bottom fill pattern. Six neodymium magnets, 8x2mm. If you use too powerful magnets, the parts are closing so strong, that they can hurt someone. N50 are fine. cyanacrilic glue. Make sure you're gluing the magnets with the right poles!

    Free

  4. 245 downloads

    This anatomically accurate mandible bone (jawbone) was created by Dr. Marco Vettorello, who has graciously given permission to share it here. The mandible forms the lower jaw. It is connected to the rest of skull at the temporomandibular joint. The file is in STL format and compressed with ZIP. This file is also available here. jaw, mandible, jaw, bone, 3d, printing, angle, ramus, coronoid, process, .stl, 3d, model, printable, printing, medicine, medical, incisor, molar, premolar, canine, teeth, tooth, dental, dentistry, foramina, bone,

    Free

  5. 963 downloads

    This anatomically accurate human heart was created by Dr. Marco Vettorello, who has graciously given permission to share it here. The file is in STL format and compressed with ZIP. This file is also available here.

    Free

  6. Version 1.0.0

    62 downloads

    I generated this model for cardiosurgical training simulator. I used the Obelix dataset from the Osirix dicom library. Those are the the raw 3d models of the thorax and the heart. I used those to add two mini invasive accesses to the right and a table for pig hearts in the mediastinum with the shape of the diaphragmatic of the heart. I took 2 kg. of PLA and more than 200 hours of print, sliced into 10 separate pieces and glued with cyanacrilate glue. It's quite resilient, the floating ribs are quite breakable and I don't recommend to print them. I'm adding here the raw files, because I don't know what kind of access you need on the thorax. The printed thorax can be covered with vinyl or leather for extra realism. anatomy, thorax, 3d, printing, simulator, chest, .stl, 3d, model, printable, ribs, sternum, cartilage, dorsal, spine, transverse, body, intervertebral, disc, bone, ventricle, auricle, mediastinum

    Free

  7. A member recently messaged me with a question about a brain she printed from this file. I as posting the response here in the hope that it will help others in the community. QUESTION "I came across your 3D printable human brain model and was able to successfully print it. Thank you for sharing it! Now I need to post-process it and am wondering if you can explain how you post-processed your print? I have never done the post-processing before and am not sure the best approach to take. I have attached a picture of our printed brain for your reference. Thank you in advance for insight you can offer!" RESPONSE: Based on the picture you attached, it looks like you used a single extruder printer and printed both the supports and model in the same material, presumably PLA. You need to tear off the supports using pliers. This can be a time-consuming job as getting in every nook and cranny can be difficult. If you find the supports are stuck to much to the model, you may have to adjust some of the settings in your slicer software to compensate. There may be a rough surface where the supports touch the model that you can sand off. If you have a dual extrusion printer, you can print the supports using a water soluble material such as PVA, which makes the supports easy to remove by soaking in water. Dual extruders can be finicky and you will likely have to spend a lot of time trying out different settings to get the supports to work just right, including calibrating the XY offset of the second extruder, determining optimal print temperature for the PLA and support to work together, overhang speed, support infill percentage, etc. This process is very time consuming but gratifying once you get your printer dialed in. If you don't want to deal with the headache, embodi3D has a 3D printing service and can print and ship to you. Hope this helps. Dr. Mike
  8. Version 1.0.0

    0 downloads

    An aneurysm of the abdominal aorta in close proximity to horseshoe kidney. Postoperative model. Preoperative version. Due to the improved circulation (result of the surgery), the structures are with improved details, compared to the previous model.

    $25.00

  9. Version 1.0.0

    1 download

    An aneurysm of the abdominal aorta in close proximity to horseshoe kidney. Presurgical model. The operation is ongoing. Honestly, I'm pretty happy with the result (and also the surgical team, which ordered the model). I printed it on Prusa MK3S, the kidney with the veins and the distal parts of the arteries with white Esun PLA, the aorta with red 3dJake Eco PLA, on 0,150mm layer height. The kidney is printed on 30% gyroid infill and 2 perimeters, with support on build plate only plus several support enforcers. The aorta is with 4 perimeters and 100% concentric infill, with support on build plate only and few support blockers. I glued them together with cyanacrylic glue and used a touch of red acrylic paint to make the glued parts more appealing. It took 300 grams of plastic and the printing time was 36 hours because of the kidney. aorta, aneurysm, horseshoe, kidney, presurgical, 3d, printing, celiac, trunk, vessels, mesenteric, superior, inferior, iliac, common, external, internal, abdomen, infrarrenal, organ, vascular, abdominal,

    $25.00

  10. Version 1.0.0

    60 downloads

    This is a model, generated from a ultrasound dataset. So far, I'm quite happy with the result. Source - Ultrasound baby test3 ultrasound, baby, fetus, 3d, printing, head, printable, .stl 3d, model, frontal, maxillofacial, nasal, eyelid, skull, neck,

    Free

  11. Hello. I own a 3D Printing Service Bureau (imtyris.com). The out put of our 3D printer is a paper model, either plain white, or in millions of colors. I'm looking for someone to work with to develop CT or MRI data into a full color paper model. Dave Jahnz Imtyris 858 354-4200
  12. 1. i preview it looked rough could they print it higher quality 2. if cost how much per model 3. how i pick right stuff PLA / AMS / ETC CAN SOMEONE HELP ME WITH SERVICES / I'M ROOKIE AT THIS STILL thank u, mike foote
  13. 133 downloads

    This 3D printable jaw and maxilla was created from a CT scan. dental, teeth, ct, scan, jaw, mandible, maxilla, dentistry, 3d, printing, bone, 3d, model, printable, petrous, ridge, foramina, foramen, upper, lower, mastoid, process, nasal, spine, clivus, base, skull, head, angle, ramus, coronoid, pterygoid, Files are available in both STL and Blender formats. This model is shared under the Creative Commons Attribution license and was created by Prevue Medical and posted here.

    Free

  14. I decided to give my Prusa MK3 printer a real challenge, so I cut my best skull model, I added some slots for neodymium magnets and I started to print the parts. I'm done with the half of them and I'll update my post when I'm done.
  15. Vascular Training Models Venous Models: IVC Filter Deployment/Retrieval Model: VIVC01000M Iliac Vein Stenosis Extension Model: VIVC01E2SC Gonadal Vein Embolization Extension Model: VGON01000C Femoral Vein Extension Model: VFEM01000C Flexible SVC Extension Model: VSVC01000F Vascular Training Models Arterial Models: Extendable Abdominal Aorta Model: AABD02000C Upper and Lower Leg Extension Model: AALE01000C Abdominal Aortic Aneurysm EVAR Model: AAAA01000C Stand-Alone Abdominal Aorta Model: AABD01000C Description: The iliac vein stenosis model is a single piece that replaces Part E (common iliac veins) in the IVC filter model. This model contains a high grade stenosis in the proximal left common iliac vein, the classic position of the so-called May-Thurner stenosis. In May-Thurner syndrome, chronic compression and scarring of the proximal left common iliac vein, is caused by the crossing right common iliac artery. This results in stenosis of the left common iliac vein, slow blood flow, and eventually clotting and formation of deep vein thrombosis (DVT). After the DVT is cleared with anticoagulation or thrombectomy/thrombolysis, the iliac vein stenosis must be treated with venous stenting. Contact us for model information and prices This model has a 4 mm thick, 9 mm wide stenosis at the crossing point between the left common iliac vein and the right common iliac artery. It is perfect for practicing venous stenting and thrombectomy/ thrombolysis.
    Procedures that this model can teach or practice: venous stenting venous thrombectomy venous thrombolysis venous catheterization Compatibility: Gonadal vein embolization extension model (# VGON01000C) Femoral vein extension model (# VFEM01000C) Flexible SVC extension model (# VSVC01000F) Required models: This model should be used with the IVC filter deployment/ retrieval model (# VIVC01000M) For questions and pricing contact us. Please include the model name and number with your inquiry: Iliac Vein Stenosis Extension model (# VIVC01E2SC)
  16. 1,012 downloads

    -> IMPROVED VERSION OF THIS FILE IS AVAILABLE HERE <-- This 3D printable model of a human heart was generated from a contrast enhanced CT scan. The model comes in 4 slices, and demonstrates the detailed anatomy of the human heart in exquisite detail. Each slice stacks on top of the prior slice to form a complete human heart. Individual slices show the detailed cardiac anatomy of the right and left ventricles, and right and left atria, and outflow tracts. Perfect for educational purposes. Download this model for free and 3D print the model yourself! If you find this and other free medical models available for download on Embodi3d.com useful, please give back to the community by uploading and sharing a medical model of your design.

    $19.99

  17. 117 downloads

    This is a .stl file produced from a CT scan of myself. I used 'InVesalius 3.0 free' to convert the 2D dicom images into the .stl file. I use either 3D Tool or Materialise's MiniMagics (free versions) to view and manipulate the 3D image. I have been told I had a severe hyperflexion injury to my c spine during an assault in 1988 and sustained a number of fractures and subluxations which were not diagnosed by a hospital as they discharged me from the ER in error before I had been examined by a Dr. It wasn't until I had a CT scan in 2011 and produced 3D images from it that I discovered various bony abnormalities that were subsequently identified as fractures & subluxations by experts. I understand the right transverse process of T1, tip of C6 spinous process and the left greater cornu of the hyoid bone are the most obvious old fractures that can be seen. cervical, spine, .stl, 3d, printing, .stl, bone, 3d, model, printable, vertebrae, spine, atlas, axis, body, intervertebral, space, laminae, facet, transverse, process, spinous, process, printable, 3d, model, ribs, clavicle,

    Free

  18. Version 2.0

    787 downloads

    Anatomically accurate full-size human lumbar vertebra created from a real CT scan. File in Collada format. bone, 3d, printing, ct, scan, vertebra, lumbar, transverse, spinous, process, body, 3d, model, printable, spine, laminae, facet, pedicle, See the video here: Copyright 2013 Embodi3d

    Free

  19. Version 1.0.0

    16 downloads

    This 3D printable STL file contains a model of the skull base was derived from a real medical CT scan. Some artifact from dental fillings is present. This model was created using the democratiz3D free online 3D model creation service. QIN-HN-01-0003 .stl, 3d, printing, model, skull, base, jaw, mandible, artifact, base, foramina, .stl, 3d, model, printable, angle, ramus, body, mastoid, process, cervical, lordosis, atlas, axis,

    Free

  20. Version 1.0.0

    359 downloads

    This is an anonymized CT scan DICOM dataset to be used for teaching on how to create a 3D printable models., tutorial, 3d, printing, model, dataset, ct, dicom, base, skull, head, petrous, ridge, mastoid, cells, clivus, atlas, axis, cervical, spine, neck, muscles, infrahyoid, suprahyoid, trachea, lower, turbinate, pharynx, larynx, esophagus, prevertebral, bone, 3d,

    Free

  21. Bones The main advantage of the orthopedical presurgical 3d printed models is the possibility to create an accurate model, which can be used for metal osteosynthesis premodelling - the surgeons can prepare (bend, twist, accommodate) the implants prior the operation. After a sterilisation (autoclaving, UV-light, gamma-ray etc etc), those implants can be used in the planned surgery, which will decrease the overall surgery time (in some cases with more than an hour) with all it's advantages, including a dramatic decreasing of the complication rates, the X-ray exposure for the patient and for the surgeons, the cost and the recovery rates etc etc. For this purpose, you need a smooth bone model, with clearly recognizable and realistic landmarks, realistic measurements and physical properties, close to the real bone. Traditionally, the orthopedical surgeons in my institution used polystyrene models, made by hand, now they have access to 3d printed models and they are better in any way. Here are some tips how to print that thing. 1. Method - FDM. The bone models are the easiest and the most forgiving to print. You can make them with literally every printer you can find. FDM is a strong option here and, in my opinion, the best method on choice.2. Matherial - PLA - it's cheap, it's easy to print, it's the bread and butter for the bone printing. Cool extruding temperature (195-200C) decrease the stringing and increases the details in the models.3. Layer heigh - 0,150mm. This is the best compromise between the print time, the quality and the usability of the models.3. Perimeters (shell thickness) - 4 perimeters. One perimeter means one string of 3d printed material. It's width depends on the nozzle diameter and the layer thickness. For Prusa MK3 with 0,4mm nozzle 1 perimeter is ~0,4mm. To achieve a realistic cortical bone, use 4 perimeters (1,7mm). The surgeons loves to cut stuff, including the models, in some cases I have to print several models for training purposes. 4 perimeters PLA feels like a real bone.4. Infill - 15% 3d infill (gyroid, cuboid or 3d honey comb). The gyroid is the best - it looks and feels like a spongy bone. It's important to provide a realistic tactile sensation for the surgeons, especially the trainees. They have to be able to feel the moment, when they pass the cortical bone and rush into the spongiosa.5. Color - different colors for every fracture fragment. If the model is combined with a 3D visualization, which colors corresponds with the colors of the 3d print, this will make the premodelling work much easier for the surgeons. Also, it looks professional and appealing. 6. Postprocessing - a little sanding and a touch of a acrylic varnish will make the model much better.7. Support material - every slicer software can generate support, based on the angle between the building platform and the Z axis of the model. You can control this in details with support blockers and support enforcers, which for the bones is not necessary, but it's crucial for the vessels and the heart.Conclusions - the bone models are easy to make, they look marvelous and can really change the outcome of every orthopedical surgery.
  22. 207 downloads

    This anatomically accurate 3D printable sphenoid bone was created by Dr. Marco Vettorello, who has graciously given permission to share it here. The sphenoid bone forms the base of the skull. It houses the sella turcica, which protects the pituitary gland and the sphenoid air cells which are part of the paranasal sinus system. The file is in STL format and compressed with ZIP. This file is also available here.

    Free

  23. Vascular Training Models Venous Models: IVC Filter Deployment/Retrieval Model: VIVC01000M Iliac Vein Stenosis Extension Model: VIVC01E2SC Gonadal Vein Embolization Extension Model: VGON01000C Femoral Vein Extension Model: VFEM01000C Flexible SVC Extension Model: VSVC01000F Vascular Training Models Arterial Models: Extendable Abdominal Aorta Model: AABD02000C Upper and Lower Leg Extension Model: AALE01000C Abdominal Aortic Aneurysm EVAR Model: AAAA01000C Stand-Alone Abdominal Aorta Model: AABD01000C Description: The gonadal vein embolization model is a two-part model that is compatible with the standard IVC filter deployment/ retrieval model. It consists of a modified IVC segment that snaps into place in the IVC position, and a distal gonadal vein segment. The pathologically dilated gonadal vein is from a real patient with severe pelvic congestion syndrome and consists of a dilated left gonadal vein that measures 11 mm in diameter. The abnormal vein can be accessed from the femoral or jugular approach and is perfect for deploying coils, occlusion devices, or foam. Once deployed the embolization devices can be easily removed. Contact us for model information and prices
    Procedures that this model can teach or practice: Gonadal vein embolization Renal vein sampling Adrenal vein sampling Compatibility: Iliac vein stenosis extension model (# VIVC01E2SC) Femoral vein extension model (# VFEM01000C) Flexible SVC extension model (# VSVC01000F) Required models: This model should be used with the IVC Filter Deployment and Retrieval Model (# VIVC01000M) For questions and pricing contact us. Please include the model name and number with your inquiry: Gonadal Vein Embolization Extension Model (# VGON01000C)
  24. Vascular Training Models Venous Models: IVC Filter Deployment/Retrieval Model: VIVC01000M Iliac Vein Stenosis Extension Model: VIVC01E2SC Gonadal Vein Embolization Extension Model: VGON01000C Femoral Vein Extension Model: VFEM01000C Flexible SVC Extension Model: VSVC01000F Vascular Training Models Arterial Models: Extendable Abdominal Aorta Model: AABD02000C Upper and Lower Leg Extension Model: AALE01000C Abdominal Aortic Aneurysm EVAR Model: AAAA01000C Stand-Alone Abdominal Aorta Model: AABD01000C Description: The IVC filter deployment/retrieval medical training model includes all the major venous structures in the human torso from the right jugular vein of the neck to the right and left common femoral veins at the level of the hips. The model allows for the education and training in a variety of venous and IVC filter related procedures. The model was created from a real CT scan so the vessel positions, diameters, and angles are all real. Entry points are present at the right jugular vein and brachiocephalic vein for upper body access, and the bilateral common femoral veins for lower body access. Attachments are present to make placement of a real vascular sheath easy. The model can be used to illustrate specific devices for the procedures listed and is used by medical device companies to demonstrate and teach the use of their products. The IVC model comes in a rugged and portable carrying case and is easily transportable. It assembles and disassembles in less than 20 seconds. A variety of extensions are available to expand the number of procedures that can be simulated. Contact us for model information and prices
    Procedures that this model can teach or practice: IVC filter placement, jugular or femoral approach Common iliac filter placement, jugular or femoral approach IVC filter retrieval Venous stenting IVC and iliac vein thrombectomy or thrombolysis Venous embolization Hepatic vein cannulation Compatibility: Iliac vein stenosis extension model (# VIVC01E2SC) Gonadal vein embolization extension model (# VGON01000C) Femoral vein extension model (# VFEM01000C) Flexible SVC extension model (# VSVC01000F) For questions and pricing contact us. Please include the model name and number with your inquiry: IVC Filter Deployment and Retrieval model (# VIVC01000M)
  25. I'm trying to 3d print my own skull just for fun and well I have the DCOM file but every time when I try and convert it the whole skull doesn't come out. Whenever I convert the DCOM file any of them it only gives me from the top do about the middle of the eye socket and i want the whole thing. Can someone please help me and tell me what i might be doing wrong.
×
×
  • Create New...