Jump to content

Search the Community

Showing results for tags 'bioprinting'.

More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


  • Embodi3d Test Blog
  • 3D Printing in Medicine
  • Cool Medical 3D-Printing
  • 3D Bio Printing by Paige Anne Carter
  • SSchoppert's Blog
  • Additive Manufacturing in Medicine
  • biomedical 3D printing
  • Bryce's Blog
  • Chris Leggett
  • 3D Models Help Improve Surgical Precision, Reduce Operating Time
  • Desktop 3D Printing in Medical Imaging
  • 3D Printing: Radiology corner
  • The Embodi3D.com Blog
  • descobar3d's Blog
  • 3D Printing in Anthropology
  • Learn to 3D Print: Basic Tools from software to printers
  • 3D printing for bio-medicine
  • Valchanov's Blog
  • Deirdre_Manion-Fischer's Blog
  • Matt Johnson's Biomedical 3D Printing Blog
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Mike at Medical Models
  • Best embodi3d.com Medical and Anatomic Files


  • Biomedical 3D Printing
    • Medical 3D Printing
    • Hardware and 3D Printers
    • Software
    • democratiz3D® Support
    • 3D Printable Models
  • General
    • Classifieds, Goods & Services
    • Member Lounge (members only)
    • Announcements


  • democratiz3D® Processing
  • COVID-19
  • Bones
    • Skull and Face
    • Dental, Orthodontic, Maxillofacial
    • Spine and Pelvis
    • Extremity, Upper (Arm)
    • Extremity, Lower (Leg)
    • Thorax and Ribs
    • Whole body
    • Skeletal tumors, fractures and bony pathology
  • Muscles
    • Head and neck muscles
    • Extremity, Lower (Leg) Muscles
    • Extremity, Upper (Arm) Muscles
    • Thorax and Ribs Muscles
    • Abdomen and Pelvis muscles
    • Whole body Muscles
    • Muscular tumors and sarcomas
  • Cardiac and Vascular
    • Heart
    • Congenital Heart Defects
    • Aorta
    • Head and Neck
    • Chest and abdomen
    • Extremity
    • Miscellaneous
  • Organs
    • Brain
    • Kidneys
    • Lungs
    • Liver
    • Other organs
  • Skin
  • Veterinary
    • Dogs
    • Cats
    • Other
  • Science and Research
    • Paleontology
    • Anthropology
    • Misc Research
  • Miscellaneous
    • Formlabs
    • Anatomical Art
    • Tutorials
    • Other
  • Medical Scans
    • Skull, Head, and Neck CTs
    • Dental, Orthodontic, Maxillofacial CTs
    • Thorax CTs
    • Abdomen and Pelvis CTs
    • Upper Extremity CTs
    • Lower Extremity CTs
    • Spine CTs
    • Whole Body CTs
    • MRIs
    • Ultrasound, General
    • Ultrasound, Fetal
    • Veterinary scans
    • Other

Product Groups

  • Products
  • Premium Services
  • Physical Print Quotes

Find results in...

Find results that contain...

Date Created

  • Start


Last Updated

  • Start


Filter by number of...


  • Start




Secondary Email Address


Found 18 results

  1. Version 1.0.0


    The knew biomodel was created from 0,7mm CT scan. In the biomodel it is possible to distinguish the bones: Tibia, Fibula, Femur and Patella. The biomodels of the bones have been segmented and are separated. There is also a file of the skin of the knee region.


  2. A worldwide collective of researchers and scientists from universities, institutions, and hospitals have come together to produce a roadmap for 3D bioprinting. Published in Biofabrication, the paper details the current state of bioprinting, including recent advances of the technology in selected applications as well as the present developments and challenges. It also envisions how the […] View the full article This is an interesting outline for how far biomedical 3D printing can potentially go. Right now we are only at stage 1.
  3. 369 downloads

    Chronic obstructive pulmonary disease (COPD), is a progressive disease that makes it hard to breathe. COPD can cause coughing that produces large amounts of mucus, wheezing, shortness of breath, chest tightness, and other symptoms. Cigarette smoking is the leading cause of COPD. COPD is a major cause of disability, and it's the third leading cause of death in the United States. Currently, millions of people are diagnosed with COPD. There are six lung STL files for download and 3D bioprinting. Three STL files are for a normal lung and three for a lung with COPD. These files are distributed under the Creative Commons license Attribution-NonCommercial-NoDerivs. Please respect the terms of the licensing agreement. Click these links to download only the normal or COPD lungs from the set. The models are provided for distribution on embodi3D.com with the permission of the creators Dr. Beth Ripley and Dr. Tatiana. These models are part of the Top 10 Killers 3D printable disease library. James Weaver and Ahmed Hosny also contributed to the project. We thank everyone involved for their contributions to embodi3d.com and their advocacy for better health and education through 3D printing.


  4. If you are interested in learning about advanced digital technologies in head and neck reconstruction please check out this conference website: http://www.adt-conference.com/ The 2017 ADT meeting is hosted by the Facing Faces Institute in Amiens and will help identify and explore the future role of innovative digital technology in head and neck reconstruction. Between a myriad of advanced emerging technologies, specific focus will be placed on: Advanced Applications in Head and Neck Reconstruction Bernard Devauchelle, MD, PhD (Amiens, France) Biomaterials and Tissue Engineering Stephen Feinberg, MD, PhD (Ann Arbor, USA) Theragnostic Applications of Magnetic Nanoparticles Florence Gazeau (Paris, France) The Parametric Human Project Azam Khan, PhD (Toronto, Canada) The conference will cover a range of topics that address advanced digital technology in relation to head, neck, and cranio-maxillo-facial reconstruction. Let me know if you have any questions!
  5. Since the 1980s, three-dimensional (3D) medical printing and bioprinting technologies have been influencing almost every aspect of the human life. Most people are, however, surprised at the kind of impact additive printing is having in the field of medicine. The technology is helping diagnose and treat complex illnesses ranging from cancer and heart disease to arthritis and infections. In recent months, several innovative 3D tools have also been created to overcome obesity. More than two-thirds of adults in the United States are obese or overweight. The prevalence of obesity has doubled in children and quadrupled in adolescents in the last 30 years. This has increased the risk of Type II diabetes, cancer and other serious conditions in men and women of all ages and abilities. Both government agencies and nonprofit organizations have spent millions of dollars creating awareness about the issue. Consequently, many people now understand the importance of healthy diet and exercise. They, however, lack resources that will help them accomplish such goals. Physicians are also looking for tools that will assist them in treating morbid obesity more effectively. Thankfully, 3D printing technology is offering some novel solutions to everyone, and researchers believe that it will ultimately bolster the efforts aimed at reducing weight and enhancing fitness levels. Liposuction Tools BioSculpture Technology, under the leadership of New York Downtown Hospitals and the Presbyterian New York affiliated plastic surgeon Robert Cucin, is relying on 3D printing to develop an innovative line of surgical instruments to perform liposuction. The technology is also allowing surgeons to create exact replicas of the patient’s organs and practice the procedure before the actual intervention. Together, these products are making liposuction more accessible and safe. Liposuction is an invasive procedure that involves removal of excess fat from various parts of the body and is commonly used treat obesity. Close to 400,000 people underwent this surgery in 2015, as per the American Society of Aesthetic Plastic Surgery. Tracking Devices Exertion Games Lab in Melbourne, Australia, has created a simple device that can print 3D models of the user’s physical activity time, sleep time, and heart rate during the week to motivate and encourage them to set new challenges. Unlike smartphones and pedometers, the Exertion Games Lab device caters to the needs of children as it helps them grasp complex fitness-related information with ease. Children can also hold these models in their hands and share their enthusiasm with their peers. The Potential These examples just form the tip of the iceberg. The impact of 3D printing on the fight against obesity is expected to go beyond creating mechanical devices and surgical instruments. Tamara Nair, a Research Fellow at the Centre for Non-traditional Security (NTS) Studies in the S. Rajaratnam School of International Studies (RSIS), believes that the technology can also be used to create food products with higher nutritional value. Such foods may help obese and overweight individuals manage calorie intake according to their activity level. The 3D printing technology can also make nutritious foods more palatable, says Nair. These potential benefits may appear like science fiction to some readers. Nonetheless, if the recent advances in the 3D printing and bioprinting technologies are anything to go by, they may turn into reality very soon.
  6. Significant thinning or loss of hair can have a detrimental impact on the individual’s overall quality of life. Men and women with unhealthy hair often suffer from emotional issues and low self-esteem. The condition may also be indicative of an underlying medical problem. As per the American Hair Loss Association, two-thirds of American men experience some hair loss by the age of 35 and about 80 percent of them have significant thinning of hair by the age of 50. Approximately half of women over the age of 50 also suffer from serious hair loss. Apart from genetics and lifestyle, certain medications and infections can also contribute to the condition. You will find a variety of hair loss treatments in the market today ranging from herbal products to surgical interventions. However, none of these solutions have succeeded in producing dramatic results in a consistent manner. Researchers are, therefore, looking at three-dimensional (3D) medical printing and bioprinting to find products that really work, and their efforts seem to be paying off. 3D Printing Technology to Create Cranial and Hair Implants AdviHair, a subsidiary of London-based AdviCorp PlC, has developed a unique set of cranial prosthetics known as the CNC Hair Replacement System. The company uses 3D printing technology to create implants that conform to the patient’s scalp measurement and skin color. The product can help conceal partial or full scalp baldness associated with Alopecia. Once the prosthetic scalp is placed in position, it behaves like regular hair. You can swim, wash and style it the way you want. The product is expected to benefit more than 6.8 million Americans suffering from Alopecia, an autoimmune disorder that occurs when the patient’s immune system destroys his own hair follicles. The prosthetics are ideal for individuals who cannot undergo transplantation or other Alopecia treatments. Cosmetic giant L’ Oreal has collaborated with French bioprinting company Poietis to print hair follicles that will enhance their understanding of hair biology. The process involves creation of a digital map that indicates the exact position of the living cells and other tissue fragments. The digital map is used to generate instructions for the printing process. A pulsing laser bounces off a mirror through a lens and knocks one micro-droplet of the bio-ink into its position. Approximately 10,000 such droplets are deposited each second. L’Oreal is hoping to use this technology to create products that will treat and prevent hair loss at a realistic price. Improved 3D Printing Software for Hair Implants Although 3D printed cranial prosthetics and hair implants are gaining popularity, many of them take several hours to print. Researchers at Massachusetts Institute of Technology’s Media Lab are, therefore, working on a software platform called Cilllia that allows users to print hair-like structures within minutes. Additionally, researchers at the institute are looking beyond the aesthetics to explore other major functions of the follicles including adhesion, sensing, thermal protection and actuation. Hair loss can be stressful and overwhelming, and the treatments can be expensive. Many patients experience poor results in spite of their best efforts. Scientists are now using 3D printing to overcome the drawbacks associated with conventional treatments, and their recent success is offering hope to the millions of hair loss sufferers across the globe.
  7. Three-dimensional bioprinting and medical printing technologies are influencing the field of ophthalmology in a big way. Quingdao Unique, a Chinese bioprinting company, had announced in 2015 that they will be able to print 3D corneal implants within a year. Their products will be available for animal testing initially, and if everything goes as per plan, their 3D printed human corneas could be ready for clinical trials in the next two to three years. The company’s third generation bioprinter provides optimal conditions for cell growth with a temperature range of 0 to 50 degrees Celsius, humidity regulation range of 80 to 98 percent, and pH of 7.0 to 7.5. Quingdao plans to overcome strength and flexibility issues associated with most human implants by using the patient’s own cells for printing. Ophthalmologists across the globe are very excited about this development. Corneal transplants help treat vision loss due to infections, congenital deformities and injuries. In fact, cornea is the most commonly transplanted organ in the United States with over 40,000 patients receiving a new one each year, as per the American Transplant Foundation. Yet, 53 percent of the world’s population does not have access to corneal transplantations, as per a global survey published in the February, 2016, edition of the journal JAMA Ophthalmology. Additionally, many patients experience complications when their immune systems reject the transplanted graft. Three-dimensional bioprinting is, however, expected to change all that. Scientists and healthcare professionals can rely on additive printing technology to deposit patient’s own cells and other compatible materials in a pre-determined manner on a desired substrate to create patient-specific implants with a lower rate of rejection. The 3D bioprinting technology also accounts for the natural anatomical variations that exist among humans. Doctors can refer to radiological images of the patients’ eyes to generate implants that have the same dimensions as the original one. 3D Printing Aids in the Diagnosis of Glaucoma and Other Eye Diseases Dr. Andrew Bastawrous, a Kenya-based eye surgeon, created a smart phone app to diagnose eye diseases such as glaucoma, macular degeneration and diabetic retinopathy. The app relies on the patient’s perception of the various orientations of the letter “E” to provide the diagnoses. A small 3D printed adapter can be added to the camera of the smartphone to obtain an image of the retina on the screen of the phone while administering the test. This technology is helping Dr. Bastawrous diagnose and treat thousands of patients with eye diseases in underprivileged areas of sub-Saharan Africa. Ophthamology Surgical Planning The use of 3D printing is not limited to corneal transplantations. Surgeons can use this technology to create models of the patient’s eyes and practice the procedure before the actual intervention. This preparation “would allow a full appreciation of the anatomic relationships between the lesions and the complicated surrounding structures,” as per an article published in the journal Investigative Ophthalmology and Visual Science. This invaluable tool has also transformed clinical practice and education. Researchers are using a 3D Systems Z650 printer to produce “highly realistic” 3D prints of orbits that offer enhanced visualization of the delicate nerves of the eye. The 3D models are made from non-human materials and thereby, help avoid the ethical questions associated with cadaver specimens. These recent developments only form the tip of the iceberg. Nonetheless, they clearly exemplify the limitless possibilities of 3D printing in ophthalmology. The technology is bound to simplify the treatment of eye diseases and improve patient outcomes dramatically.
  8. According to the US Department of Health and Human Services, 22 patients die each day in need of an organ transplant because the demand for organs far outpaces the supply. If the compelling idea of producing 3D printed organs is realized many lives could be saved. A big challenge in this field is to produce printable material that can support cells and is also permeable to nutrients. A hydrogel is a type of synthetic cross-linked polymer that is highly water absorbent. Hydrogels are commonly used as tissue engineering scaffolds for cells because of their biocompatibility. This is a hot topic in the field right now, and many people around the world are working on developing new bioprinting methods. A challenge to the development of these methods is how well the printed object corresponds to the plan. A group of Chinese scientists did a study of how various printing parameters affected printing fidelity. They published their results last week in Scientific Reports, the premier scientific journal Nature brand’s open source online journal. The printing material or bioink must be liquid before printing and gel after printing. To make their hydrogels, they used sodium alginate (the same material this group used to print vasculature), gelatin, and a solution of calcium chloride as a cross linker. In order to develop a bioprinting process, they feel it is important to understand the impact of changing the printing parameters including air pressure, temperature, feed rate, and printing distance. Another parameter included the ratio of gelatin and alginate. Using a lab-built 3D printer, they started out with printing 1D lines on a flat surface, connected at different angles. They moved on to lattice shapes as shown in the image above, looking at how well the lattice maintained its shape with different line spacings. The hydrogel tends to spread somewhat upon printing. The printing surface was cooled so that the gel formed. The experiments also determined the impact of gravity. They used extrusion based printing as opposed to other types of printing because cells are sensitive to thermal and mechanical stress. They found that the 3D printing process did not damage or kill mouse fibroblast cells suspended in the hydrogel as it only had a slight impact on cell survival. Finally, the looked at a 3D object with successive printed layers as shown in the figure below. a- Digital model b- Outline of the first layer c- First layer with outline filled in d- Views of 3D structure with about 30 printed layers
  9. Stem cell research has been plagued with innumerable controversies and ethical questions. Most researchers agree that these undifferentiated embryonic cells have the potential to treat serious conditions such as heart disease, diabetes, stroke, arthritis, and Parkinson’s disease. They may also help evaluate the impact of new drugs and therapies at the cellular level. Scientists, however, must be able to differentiate the stem cells consistently within a controlled environment to meet their specific needs. Furthermore, obtaining these cells from five to six day old embryos may not be acceptable to everyone. The scientific community is, therefore, looking at three-dimensional (3D) bioprinting to overcome some of the obstacles associated with stem cell research and to make the treatments more accessible, efficient and safe. 3D Printed Stem Cells There have been multiple attempts to print stem cells in the laboratory. Nano Dimension, an Israel-based technology firm, recently filed a patent for 3D printed stem cells. The company collaborated with Accellta, which is known for its stem cell suspension and induced differentiation technologies. Researchers from both organizations worked together to accelerate the printing process with the help of a specially adapted 3D printer that can print billions of high quality stem cells per batch. Nano Dimension believes that its technology can benefit pre-clinical drug discovery and testing, toxicology assays, tissue printing, and transplantation. Previously, scientists at Heriot-Watt University in Edinburgh created a cell printer that produced living embryonic stem cells. The printer, a modified CNC machine, was fitted with two bio-ink dispensers. The machine dispensed layers of embryonic stem cells and nutrient media in a specific pattern that was ideal for differentiation. In another study, researchers at Tsingua University in China and Drexel University in Philadelphia developed homogenous embryoid bodies using the 3D printing technology. The process mimicked early stages of embryo formation that involves clumping of the pluripotent stem cells. Researchers of this study believe that these little building blocks will pave way for the creation of larger, heterogeneous embryoid bodies. Recent Applications of 3D Bioprinting Bioprinted 3D stem cells are also being used to treat a variety of conditions. For example, researchers at ARC Center of Excellence for Electromaterials Science and Orthopedicians at St. Vincent’s Hospital, Melbourne, have developed a 3D printing pen that allows surgeons to create customized cartilage implants from human stem cells during the surgery. The handheld device offers unprecedented control and accuracy. The pen works by extruding the patient’s own stem cells along with a hydrogel. The cartilage tissue has a 97 percent survival rate and can heal the body over time. Researchers believe that this technology can also be used to create skin fragments, muscles and bone structures. As part of the MESO-BRAIN initiative, led by Aston University, scientists differentiated human pluripotent stem cells into specific neurons on a specially defined 3D printed scaffold. The final structure was based on the outer layer of the cerebrum and included nanoelectrodes that enabled electrophysiological function of the neural network. The technology will help develop cellular structures for pharmacological testing and help find cures for complicated mental illnesses such as Parkinson’s disease and dementia. Three-dimensional bioprinting technology is growing at a rapid pace, and scientists are using it to print stem cells as well. The 3D printed versions resemble the actual stem cells in structure and function without some of the drawbacks. Scientists and healthcare professionals across the globe are, therefore, excited about the limitless possibilities of 3D printing and its impact on stem cell research. Sources: http://www.tctmagazine.com/3D-printing-news/nano-dimension-accellta-3d-bioprinter-stem-cells/ http://www.sciencealert.com/scientists-have-found-a-way-to-3d-print-embryonic-stem-cell-building-blocks
  10. From DQbito Biomedical Engineering (www.dqbito.com) we offer a complete service of 3D printing for dental clinics and hospitals. Our proposals combine our expertise in segmentation of DICOM files with our knowledge of several tecnologies and printers. We offer printer + learning (classroom and online) + monitoring and advice learning in using 3D printing for make anatomical models and surgery guides. All the information is availiable in Spanish in www.dqbito.com and I am willing to answer questions in English if you write me to: angel@dqbito.com
  11. Difference Between 3D Medical Printing and Bioprinting The first three-dimensional (3D) printer was invented by Charles Hull in 1984. In the next 30 years, the technology advanced rapidly and evolved into a $3.07 billion industry by the end of 2013. The 2014 Wohler’s report expects this number to grow to $12.8 billion by 2018 and exceed $21 billion by 2020. Unlike the past, the use of 3D printing technology is not limited to prototyping and development of traditional consumer products such as cars and electronics. The technology has also revolutionized the field of medicine as scientists and healthcare professionals are using 3D printing to print everything from prosthetics and surgical instruments to medications and biological tissues. The goal is to develop highly specific therapeutics to manage complex illnesses and injuries. What is 3D Medical Printing? A variety of 3D printers are available in the market today. While some versions are highly versatile, others have been specifically designed to create a particular type of product. Traditional 3D medical printers use inorganic compounds such as polymer resins, metal, plastic, ceramic and rubber among other things. The printer will deposit the desired materials on a substrate in a specific pattern that is based on the texture and the dimensions of the target object. Users often rely on scanned images of the target to obtain accurate measurements. Research labs, surgeons and corporations have used this technology to create surgical instruments, implants and models of various tissues and organs. How is Bioprinting Different? Traditional 3D medical printing and bioprinting are obviously inter-related and somewhat similar to each other. In fact, many people use the terms interchangeably. While both printers use the same basic additive printing technology, bioprinting and 3D printing differ significantly at the implementation level mainly because of the type of raw materials they use. Bioprinters have been designed to deposit biological materials such as organic molecules, bone particles, cells and other extracellular matrices on a desired substrate. Unlike traditional 3D medical printing, this process involves complex designing and extensive scaffolding as it aims to generate multicellular structures that mimic the real tissue in structure and function. In most cases, the printer should be maintained within a controlled environment to retain the viability of the product. Organovo is a leading company in the field of bioprinting. Currently, bioprinting technology is being used to print tissue fragments, dental and bone implants, medications, and prosthetics. The products can be customized as per the specific needs of the patient or the research study. Many pharmaceutical companies are using bioprinted tissue fragments to understand the actual impact of medications and other therapeutics at the cellular level. Surgeons are also hopeful that the highly compatible bioprinted implants and tissues will increase the success rates of transplantation surgeries. In fact, many products are already undergoing clinical trials. As per TechNavio, a leading market research company, the bioprinting industry will grow at the rate of 14.52 percent between 2013 and 2018. Along with 3D medical printing, it is helping surgeons and other healthcare professionals understand the human body in great detail. The two technologies are complementing each other and are evolving together to change medicine forever. Sources: http://www.azom.com/article.aspx?ArticleID=12824
  12. Three-dimensional medical printing and bioprinting technologies are offering innovative solutions to dentists, orthodontists and other professionals treating complex gum diseases and related oral health problems. These treatments may benefit a significant portion of the 67.4 million American adults that suffer from such conditions. Gum disease, also known as periodontitis, is characterized by swollen and bleeding gums, persistent bad breath, and loose teeth. If untreated, the condition can lead to serious complications including tooth loss. Many patients with gum diseases may require bone or tissue grafting. Traditionally, bone grafting involves implanting natural or synthetic bone fragments into the affected gums and allowing them to grow in a controlled manner to replace the lost teeth. Patients with damaged gums may require soft tissue grafting. During the process, a dentist will remove tissues from another part of the mouth and place them in the gums to treat them. Bioprinting Bones and Gums While such treatments may be effective, the challenge lies in finding compatible bone and tissue fragments. Additionally, the transplanted parts may get reabsorbed without producing the desired results. Researchers at Griffith University's Menzies Health Institute in Queensland, Australia, have created an novel solution by regenerating gum and bone tissues using 3-D bioprinters. They have trialed these components in animal models, such as rats, sheep and pigs, and are now focusing on clinical trails in humans. The technology may soon be available for commercial use. As part of the study, the Australian researchers scanned gums and oral cavities of animals and used the images to obtain specific dimensions of the missing parts. They created computer-aided designs and relied on a 3-D bioprinter to create the models. Cells, extra-cellular matrix and other components of the targeted tissue were fed into the bioprinter, which was maintained at an optimal temperatures for tissue development. The Benefits of BioPrinting The researchers at Griffith's university have created scaffolds with bone and ligament compartments, and the technology has allowed them to recreate the entire architecture of the missing tissue with unprecedented accuracy. The 3-D printed tissue fragment can be customized according to the patient's specific needs. The researchers believe that this technology will eliminate the need for compatible bone and tissue grafts from the patient's own body. As a result, the surgical intervention will be easy to perform, less invasive, and cost-effective. The bioprinting industry is evolving at a rapid pace. Researchers from other fields of medicine are also benefiting from this technology. It is only a matter of time before these printers become accessible to millions of patients with gum diseases and other oral conditions.
  13. Organ transplantations and surgical reconstructions using autografts and allografts have always been challenging. Apart from the complexity of the procedure, healthcare professionals also have difficulty finding compatible donors. Autografts derived from one part of the body may not fit in completely at the new location causing instability and discomfort. As per the U.S. Department of Health and Human Services, about 22 people die each day due to a shortage of transplantable organs. Creating more awareness about organ donation is only part of the solution. Researchers have to look for other alternatives, and this is where technologies such as three-dimensional medical printing and bioprinting are making an impact. Integrated Tissue-Organ Printing System (ITOP) Millions of dollars are being invested to develop technologies that will help healthcare professionals print muscles, bones and cartilages using a printer and transplant them directly into patients. The ITOP system is a big step in that direction. It was developed by researchers at Wake Forest Institute for Regenerative Medicine. They used a special biodegradable plastic material to form the tissue shape, a water-based gel to contain the cells, and a temporary outer structure to maintain shape during the actual printing process. The scientists extracted a small part of tissue from the human body and allowed its cells to replicate in vitro before placing them in the bioprinter to generate bigger structures. Unlike other 3-D printers, the ITOP system can print large tissues with an internal latticework of valleys that allows the flow nutrients and fluids. As a result, the tissue can survive for months in a nutrient medium prior to implantation. Researchers have used this technology to develop mandible and calvarial bones, cartilages and skeletal muscles. The goal is to create more complex replacement tissues and organs to offset the shortage of transplantable body parts. Polylaprocaptone Bone Scaffolds Researchers at John Hopkins are also developing 3-D printable bone scaffolds that can be placed in the human body. Their ingredients include a biodegradable polyester, known as Polylaprocaptone, and pulverized natural bone material. Polylaprocaptone has already been approved by the Food and Drug Administration (FDA) for other clinical applications. Researchers combined it with natural bone powder and special nutritional broth for cell development. The cells were added to a 3-D printer to generate bone scaffolds, which have been successfully implanted into animal models. Researchers at John Hopkins are now looking for the perfect ratio of Polylaprocaptone and bone powder that will produce consistent results. They will subsequently test their scaffolds in humans as well. More studies are being done as we speak. Many surgeons have also started using 3-D printed tissues and bones to help their patients. In the next few years, this technology will become more accessible, affordable and effective and may change medicine forever. Sources: Photo Credit: Wake Forest Institute for Regenerative Medicine Scientists 3D Print Transplantable Human Bone
  14. Tissue engineering can't expand into three dimensions as long as cells can't access oxygen and nutrients via blood vessels. This remains a big challenge for the printable organ and tissue engineering communities. Monica Moya and Elizabeth Wheeler, biomedical engineers at Laurence Livermore National Laboratory, are working on a way to solve this “plumbing problem,” as Moya puts it, using 3D bioprinting. Moya has previously developed microfluidic devices to test the effect of mechanical cues on vessel growth, and published her work in the journal Lab on a Chip. Now she and Wheeler are collaborating on moving to a 3D printing platform. Lawrence Livermore National Laboratory published a blog post last month describing their recent work. First, they had to make sure that the printing techniques were compatible with cell viability. They had to change out the extrusion and fluidic parts of a standard 3D-printer, to eliminate the high temperatures and shear forces that would kill the cells. The bioink, a fluid with biological components, contains endothelial cells, fibrin, and fibroblast cells. The viscosity had to be finely controlled, so that it would remain liquid inside the printer, and gel once in contact with the bed, to print out the tissue support for the vessels. To make tubular vessels, a mixture of alginate (a polysaccharide isolated from seaweed) and fibroblast cells, is printed from a coaxial needle (a needle within a needle) resulting in printed vessel structures, called biotubes. Finally, more tissue bio-ink is laid down, enveloping the biotubes. The biotubes are hardened by flowing calcium solution through the tubes. The tissue patch starts to grow its own vessels, but it looks like spaghetti, with no organization. The alginate and calcium tubes eventually dissolve, leaving the vessels formed by the cells. Future planned developments include directing the vessel formation with nutrient and mechanical cues. The youtube video demonstrates the printing process: The photo above shows Monica Moya holding a dish with several of these biotubes. She explained their reasoning, “If you take this approach of co-engineering with nature you allow biology to help create the finer resolution of the printed tissue. We’re leveraging the body’s ability for self-directed growth, and you end up with something that is more true to physiology. We can put the cells in an environment where they know, ‘I need to build blood vessels.’ With this technology we guide and orchestrate the biology.” Moya and Wheeler did an AMA on Reddit back in December to discuss their work with interested members of the public. They have made tissue patches the size of one square centimeter, the size of a fingernail. Future directions include larger tissue patches. Potential applications of this work include drug testing, toxicology studies, and implantable tissues. Moya and Wheeler’s work is part of a larger project called iCHIP (in vitro Chip-based Human Investigational Platform) looking to create a “human on a chip” where different teams are working on making tissue models of the stomach, liver, heart, kidney, brain, blood–brain barrier, immune system, and lungs, also described in a blog post on the Lawrence Livermore National Laboratory website. Photo credit: Lanie L. Rivera Lawrence Livermore National Laboratory
  15. The University of Wollongong, Australia has announced a new free online course in 3D bioprinting. Details available from the link below: https://www.engineersaustralia.org.au/portal/news/3d-printing-will-provide-body-parts-future
  16. 37 downloads

    The tibia, or shinbone, is the most common fractured long bone in your body. The long bones include the femur, humerus, tibia, and fibula. A tibial shaft fracture occurs along the length of the bone, below the knee and above the ankle. Because it typically takes a major force to break a long bone, other injuries often occur with these types of fractures. Often times the fibula is also compromised. This 3D printable model demonstrates Intramedullary nailing. The current most popular form of surgical treatment for tibial fractures is intramedullary nailing. During this procedure, a specially designed metal rod is inserted from the front of the knee down into the marrow canal of the tibia. The rod passes across the fracture to keep it in position. This 3D printable model of tibia shaft fracture contains two STL files for bioprinting. One STL file is for printing the tibia and fibula. There is another file for printing the pin or nail which is inserted within the tibia as part of intramedullary nailing. The files have been zipped to reduce file size. You will need to unzip the files once you have downloaded them.These files are distributed under the Creative Commons license Attribution-NonCommercial-NoDerivs. Please respect the terms of the licensing agreement. The models are provided for distribution on embodi3D.com with the permission of the creators Dr. Beth Ripley and Dr. Tatiana. These models are part of the Top 10 Killers 3D printable disease library. James Weaver and Ahmed Hosny also contributed to the project. We thank everyone involved for their contributions to embodi3d.com and their advocacy for better health and education through 3D printing.


  17. 93 downloads

    Diabetes describes a group of metabolic diseases in which a person has high blood sugar, either because insulin production is inadequate, or because the body's cells do not respond properly to insulin, or both. Worldwide there are over 400 million people with diabetes. Diabetes disrupts the vascular system, affecting many areas of the body such as the eyes, kidneys, legs, and feet. Diabetes often leads to peripheral vascular disease that inhibits a person's blood circulation. With this condition, there is a narrowing of the arteries that frequently leads to significantly decreased circulation in the lower part of the legs and the feet. Poor circulation contributes to diabetic foot problems by reducing the amount of oxygen and nutrition supplied to the skin and other tissue, causing injuries to heal poorly. Preventing foot complications is more critical for the diabetic patient because poor circulation impairs the healing process and can lead to ulcers, infection, and other serious foot conditions. There are three STL files available for download and 3D bioprinting. One STL file for bioprinting the foot, one for the soft tissue and the third STL file is for the ischemic foot ulcer. All three files have been zipped to reduce file size. You will need to unzip the files once you have downloaded them.These files are distributed under the Creative Commons license Attribution-NonCommercial-NoDerivs. Please respect the terms of the licensing agreement. The models are provided for distribution on embodi3D.com with the permission of the creators Dr. Beth Ripley and Dr. Tatiana. These models are part of the Top 10 Killers 3D printable disease library. James Weaver and Ahmed Hosny also contributed to the project. We thank everyone involved for their contributions to embodi3d.com and their advocacy for better health and education through 3D printing.


  18. Researchers from the ARC Center for Excellence for Electromaterials Science (ACES) of St. Vincent’s Hospital and University of Wollongong in Melbourne, Australia are using 3D printers to study the human brain. The researchers are using a 3d printer to print living brain tissues using stem cells. Professor Jeremy Crook from ACES is working with living brain cells printed in a bioprinter to study conditions like epilepsy and schizophrenia. With the 3D bioprinting technology, they also aim to provide a transferable tissue that can be directly implanted to the human brain. Initially, 3D bioprinted tissues of the brain will be utilized to study different neurological diseases but Professor Crook noted that the living tissues generated through bioprinting can be used to restore the function of the human brain that are afflicted by certain neurological disorders. Professor Crooks noted that the biomaterials created from bioprinters can be used to support cell as well as tissue engineering to have a better model of disease biology. The results of this research can also be used in areas including disease processes and progression, drug development and cell replacement therapy. Moreover, the researchers are also looking at the potential of 3d bioprinting in developing biosynthetic implants that can be fabricated using the stem cells of the patient. This technology has a lot of potential but the researchers noted that this technology is still in its initial phase, it might still be decades before the benefits will be realized but Professor Crooks and the other proponents of this study remain hopeful.
  • Create New...