• entries
  • comment
  • views

Entries in this blog


Organ transplantations and surgical reconstructions using autografts and allografts have always been challenging. Apart from the complexity of the procedure, healthcare professionals also have difficulty finding compatible donors. Autografts derived from one part of the body may not fit in completely at the new location causing instability and discomfort. As per the U.S. Department of Health and Human Services, about 22 people die each day due to a shortage of transplantable organs. Creating more awareness about organ donation is only part of the solution. Researchers have to look for other alternatives, and this is where technologies such as three-dimensional medical printing and bioprinting are making an impact.


Integrated Tissue-Organ Printing System (ITOP)
Millions of dollars are being invested to develop technologies that will help healthcare professionals print muscles, bones and cartilages using a printer and transplant them directly into patients. The ITOP system is a big step in that direction. It was developed by researchers at Wake Forest Institute for Regenerative Medicine. They used a special biodegradable plastic material to form the tissue shape, a water-based gel to contain the cells, and a temporary outer structure to maintain shape during the actual printing process. The scientists extracted a small part of tissue from the human body and allowed its cells to replicate in vitro before placing them in the bioprinter to generate bigger structures.


Unlike other 3-D printers, the ITOP system can print large tissues with an internal latticework of valleys that allows the flow nutrients and fluids. As a result, the tissue can survive for months in a nutrient medium prior to implantation. Researchers have used this technology to develop mandible and calvarial bones, cartilages and skeletal muscles. The goal is to create more complex replacement tissues and organs to offset the shortage of transplantable body parts.


Polylaprocaptone Bone Scaffolds
Researchers at John Hopkins are also developing 3-D printable bone scaffolds that can be placed in the human body. Their ingredients include a biodegradable polyester, known as Polylaprocaptone, and pulverized natural bone material. Polylaprocaptone has already been approved by the Food and Drug Administration (FDA) for other clinical applications. Researchers combined it with natural bone powder and special nutritional broth for cell development. The cells were added to a 3-D printer to generate bone scaffolds, which have been successfully implanted into animal models. Researchers at John Hopkins are now looking for the perfect ratio of Polylaprocaptone and bone powder that will produce consistent results. They will subsequently test their scaffolds in humans as well.


More studies are being done as we speak. Many surgeons have also started using 3-D printed tissues and bones to help their patients. In the next few years, this technology will become more accessible, affordable and effective and may change medicine forever.


Photo Credit: Wake Forest Institute for Regenerative Medicine
Scientists 3D Print Transplantable Human Bone


Imagine an orthopedic surgeon printing customized ankle bones with a printer and implanting them into patients to help them walk again. Consider a surgeon printing reconstructive wedges for an ankle surgery in his office and using them to replace staples, screws and plates. While these scenarios may seem like science fiction, advances in 3-dimensional medical printing are turning them into reality.


The human ankle is made up of 26 bones, 33 joints and almost 100 muscles. Together, these components bear a significant portion of the body weight and are exposed to a lot of wear and tear. Ankle problems, such as arthritis, can be immensely painful and debilitating. The condition impacts about 1 – 4 percent of the population, as per an article published in the 2010 edition of the journal Current Opinion in Rheumatology. Conservative treatments include medications, physical therapy and devices. If these treatments fail, the patient may require surgical interventions such as arthroscopic debridement or arthrodesis.


Current Innovations
Arthrodesis involves the fusion of ankle bones using screws and plates. The patients may also require bone grafts occasionally, which can get cumbersome and painful. Zimmer Biomet, a prominent name in reconstructive orthopedic industry, has created an innovative solution with 3-dimensional bioprinting technology. The company's Unite3D Bridge Fixation System consists of an “osteoconductive matrix” of biocompatible materials that mimics the ankle bones accurately and gets absorbed into the patient's body immediately. Orthopedic surgeons Dr. Greg Pomeroy of New England Foot and Ankle Specialists and Dr. John Early from Texas Orthopaedic Associates developed this system using Zimmer Biomet's proprietary OsseoTi material. The implants are available in nine different sizes to meet the needs of the patient. They also come with single-use surgical instruments.


In 2014, Dr. Marvin Brown of San Antonio Orthopedic Group in Texas used a 3-dimensional printer to obtain components and appropriate instrument guides for an ankle replacement surgery. The surgeon combined a modular prosthetic called Inbone and the bioprinted components effectively to help a patient recover from severe arthritic pain and injury. After the surgical intervention, the patient was able to walk with minimal pain. The new ankle is expected to last for 10 years.


Image Source:


The Potential of 3D Printing in Podiatry
Most experts agree that these examples only form the tip of the iceberg. Three-dimensional bioprinting has the potential to revolutionize the field of podiatry. Current technology allows scientists to print high quality human hyaline cartilage consistently, and studies have shown that these single-celled chondrocyte structures can help treat osteoarthritis routinely using joint replacement surgeries. Bioprinting can also help print autografts of the required size thereby, reducing the need for extracting tissues from donor sites.


Healthcare professionals and researchers are immensely hopeful of impact that 3-D bioprinting will have on ankle conditions. More research is being done to come up with effective solutions that are affordably priced as well. Soon, complications associated with ankle surgeries may be a thing of the past.


What 3D Bioprinting Technology Means For Podiatry