Jump to content

Search the Community

Showing results for tags 'thoracoabdominal'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Blogs

  • Embodi3d Test Blog
  • 3D Printing in Medicine
  • Cool Medical 3D-Printing
  • 3D Bio Printing by Paige Anne Carter
  • SSchoppert's Blog
  • Additive Manufacturing in Medicine
  • biomedical 3D printing
  • Bryce's Blog
  • Chris Leggett
  • 3D Models Help Improve Surgical Precision, Reduce Operating Time
  • Desktop 3D Printing in Medical Imaging
  • 3D Printing: Radiology corner
  • The Embodi3D.com Blog
  • descobar3d's Blog
  • 3D Printing in Anthropology
  • Learn to 3D Print: Basic Tools from software to printers
  • 3D printing for bio-medicine
  • 3D Biomedical Printing - by Jacob M.
  • Valchanov's Blog
  • Deirdre_Manion-Fischer's Blog
  • Matt Johnson's Biomedical 3D Printing Blog
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Mike at Medical Models
  • TOP TEN THE MOST DOWNLOADED EMBODI3D

Forums

  • Biomedical 3D Printing
    • Hardware and 3D Printers
    • democratiz3D®
    • Software
    • Clinical applications
    • 3D Printable Models
    • Medical Imaging: CT, MRI, US
    • Science and Research
    • News and Trending Topics
    • Education, Conferences, Meetings, Events
  • General
    • Announcements
    • Questions and Answers
    • Suggestions and Feedback
    • Member Lounge (members only)
  • Classifieds, Goods and Services
    • General Classifieds - members post free
    • Services needed
    • Services offered
    • Stuff for sale/needed
    • Post a Job
    • Looking for work - visible only to members

Categories

  • democratiz3D® Processing
  • Bones
    • Skull and Head
    • Dental, Orthodontic, Maxillofacial
    • Spine and Pelvis
    • Extremity, Upper (Arm)
    • Extremity, Lower (Leg)
    • Thorax and Ribs
    • Whole body
    • Skeletal tumors, fractures and bony pathology
  • Muscles
    • Head and neck muscles
    • Extremity, Lower (Leg) Muscles
    • Extremity, Upper (Arm) Muscles
    • Thorax and Ribs Muscles
    • Abdomen and Pelvis muscles
    • Whole body Muscles
    • Muscular tumors and sarcomas
  • Cardiac and Vascular
    • Heart
    • Congenital Heart Defects
    • Aorta
    • Mesenteric and abdominal arteries
    • Veins
  • Organs of the Body
    • Brain and nervous system
    • Kidneys
    • Lungs
    • Liver
    • Other organs
  • Skin
  • Veterinary
    • Dogs
    • Cats
    • Other
  • Science and Research
    • Paleontology
    • Anthropology
    • Misc Research
  • Miscellaneous
    • Formlabs
  • Medical CT Scan Files
    • Skull, Head, and Neck CTs
    • Dental, Orthodontic, Maxillofacial CTs
    • Thorax and Ribs CTs
    • Abdomen and Pelvis CTs
    • Extremity, Upper (Arm) CTs
    • Extremity, Lower (Leg) CTs
    • Spine CTs
    • Whole Body CTs
    • MRIs
    • Ultrasound
    • Veterinary/Animals
    • Other

Product Groups

  • Premium Services
  • Physical Print Quotes

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Name


Secondary Email Address


Interests

Found 1 result

  1. Version 1.0.0

    14 downloads

    This is a preoperative model of thoraco-abdominal aneurysm, Crawford typle I, with rupture above the diaphragm. The subsequent haemorrhagia in the mediastinum closed temporary the rupture, probably saving the life of the patient. This was an impossible operation, which took 7 hours and the team of the best cardio-thoracic surgeons in Bulgaria. I don't know how, but the patient is still alive and kicking. It took me 3 days to make the model and to turn it into a 3d visualization and I'll share my workflow with you. I'm printing the model right now for a cardio-thoracic surgery symposium. The source is Angio CT scan with 1,3 mm slide thickness. 1. I analysed the model in Radiant Dicom viewer (you can activate trial license for unlimited amount of times, if you can't afford 100 euro for it). I selected the best series and exported them in a folder. 2. I loaded the model in 3D Slicer. First, I run two denoising algoritms (Gradient Anisotropic Diffusion and Curvature Anisotropic Diffusion), which improved the quality of the images significantly. Then I selected a ROI, which included the whole aorta. With the Segment Editor Module I segmented the lumen of the aorta. Then, as a separate segmentation, I used the Margin operation to grow the lumen with 2 centimeters and applied a boolean operation, resulting in a hollow shell with precise lumen. I had to segment the rest of the aortic wall manually. I exported the result as STL file. 3. In Meshmixer, I modeled the whole thing, until I was satisfied by the result. 4. My client asked me to remove the aortic arch (it's such a pain, I love aortic arches) and to print the aneurysmal sac with the abdominal aorta and the bifurcation of the iliac arteries. Note the double renal artery. I divided the model into two parts and installed ports for two 8x2mm and two 5x2 mm neodymium magnets with tolerance of 0,250mm. The final preprint version is on picture 3. 5. I'm printing this model with 1,5mm slide thickness, 4 perimeters, 15% gyroid infill, custom support with support enforcers, using red Natural PLA from a local manufacturer. The whole printing will take 45 hours.

    Free

×
×
  • Create New...