Jump to content

Search the Community

Showing results for tags 'medical 3d imaging'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Blogs

  • Embodi3d Test Blog
  • 3D Printing in Medicine
  • Cool Medical 3D-Printing
  • 3D Bio Printing by Paige Anne Carter
  • SSchoppert's Blog
  • Additive Manufacturing in Medicine
  • biomedical 3D printing
  • Bryce's Blog
  • Chris Leggett
  • 3D Models Help Improve Surgical Precision, Reduce Operating Time
  • Desktop 3D Printing in Medical Imaging
  • 3D Printing: Radiology corner
  • The Embodi3D.com Blog
  • descobar3d's Blog
  • 3D Printing in Anthropology
  • Learn to 3D Print: Basic Tools from software to printers
  • 3D printing for bio-medicine
  • 3D Biomedical Printing - by Jacob M.
  • Valchanov's Blog
  • Deirdre_Manion-Fischer's Blog
  • Matt Johnson's Biomedical 3D Printing Blog
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Mike at Medical Models
  • TOP TEN THE MOST DOWNLOADED EMBODI3D

Forums

  • Biomedical 3D Printing
    • Hardware and 3D Printers
    • democratiz3D®
    • Software
    • Clinical applications
    • 3D Printable Models
    • Medical Imaging: CT, MRI, US
    • Science and Research
    • News and Trending Topics
    • Education, Conferences, Meetings, Events
  • General
    • Announcements
    • Questions and Answers
    • Suggestions and Feedback
    • Member Lounge (members only)
  • Classifieds, Goods and Services
    • General Classifieds - members post free
    • Services needed
    • Services offered
    • Stuff for sale/needed
    • Post a Job
    • Looking for work - visible only to members

Categories

  • democratiz3D® Processing
  • Bones
    • Skull and Head
    • Dental, Orthodontic, Maxillofacial
    • Spine and Pelvis
    • Extremity, Upper (Arm)
    • Extremity, Lower (Leg)
    • Thorax and Ribs
    • Whole body
    • Skeletal tumors, fractures and bony pathology
  • Muscles
    • Head and neck muscles
    • Extremity, Lower (Leg) Muscles
    • Extremity, Upper (Arm) Muscles
    • Thorax and Ribs Muscles
    • Abdomen and Pelvis muscles
    • Whole body Muscles
    • Muscular tumors and sarcomas
  • Cardiac and Vascular
    • Heart
    • Congenital Heart Defects
    • Aorta
    • Mesenteric and abdominal arteries
    • Veins
  • Organs of the Body
    • Brain and nervous system
    • Kidneys
    • Lungs
    • Liver
    • Other organs
  • Skin
  • Veterinary
    • Dogs
    • Cats
    • Other
  • Science and Research
    • Paleontology
    • Anthropology
    • Misc Research
  • Miscellaneous
    • Formlabs
  • Medical CT Scan Files
    • Skull, Head, and Neck CTs
    • Dental, Orthodontic, Maxillofacial CTs
    • Thorax and Ribs CTs
    • Abdomen and Pelvis CTs
    • Extremity, Upper (Arm) CTs
    • Extremity, Lower (Leg) CTs
    • Spine CTs
    • Whole Body CTs
    • MRIs
    • Ultrasound
    • Veterinary/Animals
    • Other

Product Groups

  • Premium Services
  • Physical Print Quotes

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Name


Secondary Email Address


Interests

Found 8 results

  1. Version 1.0.0

    9 downloads

    This model is the left foot and ankle skin rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient unfortunately died 9.5 months after diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. Topographical landmarks of the foot and ankle consist of muscular, tendinous, and bony structures. Proximally, the superficial muscles of the anterior (tibialis anterior), lateral (peroneals) and posterior (gastrocnemius) compartments may be palpated. Anteriorly, the tibialis anterior tendon crosses the ankle joint and is used as a landmark for ankle joint injections and aspirations, where the practitioner will place the needle just lateral to the tendon. Posteriorly, the gastrocnemius and soleus converge to form the Achilles tendon. Ruptures of the tendon as well as tendinous changes due to Achilles tendinopathy may be palpated. At the level of the ankle joint, the joint line, medial malleolus (distal tibia) and lateral malleolus (distal fibula) may be palpated. The extensor hallucis longus and extensor digitorum longus tendons are visible at the surface of the dorsal foot. The extensor digitorum brevis muscle belly is seen on the dorsum of the lateral foot. On the plantar foot, the plantar fascia may be palpated. Nodules associated with plantar fascial fibromatosis may be palpated here. Plantar fasciitis is also diagnosed when pain is associated with palpation of the insertion of the plantar fascia on the medial heel. Other common pathologies on the plantar foot are ulcerations associated with diabetic neuropathy and other neuropathic conditions. This model was created from the file STS_023.

    Free

  2. Version 1.0.0

    1 download

    This model is the right thigh muscle rendering of a 49-year-old male with a right medial thigh undifferentiated pleomorphic malignant fibrous histiocytoma (MFH). The patient underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy treatment and was found to have a high grade lesion at the time of diagnosis. Metastases to his lungs were also found at diagnosis. The patient is still living with the disease at 2 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. Undifferentiated pleomorphic MFH has more recently been classified as Undifferentiated Pleomorphic Sarcoma. This is the most common soft tissue sarcoma in late adulthood, commonly occurring between 55 to 80 years old and most commonly in Caucasian males. Clinically, it presents as a slowly growing mass in the extremities. Biopsy of the lesion demonstrates, as its name implies, an undifferentiated and pleomorphic appearance. Pleomorphism is the pathologic description of cells and nuclei with variability in size, shape, and staining, which is characteristic of a malignant neoplasm. “Undifferentiated” means that the tissue does not appear like an identifiable tissue structure. Treatment consists of wide resection and radiation. Chemotherapy is added in cases of metastasis, most commonly to the lung. Five-year survival is between 35-60% depending on the grade of tumor and metastases. This model was created from the file STS_021.

    Free

  3. Version 1.0.0

    29 downloads

    This is the normal right foot and ankle muscle model of a 56-year-old male with right anterior thigh pleomorphic leiomyosarcoma. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The primary motions of the ankle are dorsiflexion, plantarflexion, inversion, and eversion. However, with the addition of midfoot motion (adduction, and abduction), the foot may supinate (inversion and adduction) or pronate (eversion and abduction). In order to accomplish these motions, muscles outside of the foot (extrinsic) and muscles within the foot (intrinsic) attach throughout the foot, crossing one or more joints. Laterally, the peroneus brevis and tertius attach on the proximal fifth metatarsal to evert the foot. The peroneus longus courses under the cuboid to attach on the plantar surface of the first metatarsal, acting as the primary plantarflexor of the first ray and, secondarily, the foot. Together, these muscles also assist in stabilizing the ankle for patients with deficient lateral ankle ligaments from chronic sprains. Medially, the posterior tibialis inserts on the plantar aspect of the navicular cuneiforms and metatarsal bases, acting primarily to invert the foot and secondarily to plantarflex the foot. The flexor hallucis longus inserts on the base of the distal phalanx of the great toe to plantarflex the great toe, and the flexor digitorum inserts on the bases of the distal phalanges of the lesser four toes, acting to plantarflex the toes. The gastrocnemius inserts on the calcaneus as the Achilles tendon and plantarflexes the foot. Anteriorly, the tibialis anterior inserts on the dorsal medial cuneiform and plantar aspect of the first metatarsal base as the primary ankle dorsiflexor and secondary inverter. The Extensor hallucis longus and extensor digitorum longus insert on the dorsal aspect of the base of the distal phalanges to dorsiflex the great toe and lesser toes, respectively. This model was created from the file STS_014.

    Free

  4. Version 1.0.0

    19 downloads

    This is the normal right leg muscle model (including foot) of a 56 year old male with right anterior thigh pleomorphic leiomyosarcoma. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The lower leg is divided into four muscle compartments: the anterior, lateral, superficial posterior, and deep posterior compartments. The anterior compartment is made from the dorsiflexors, including the tibialis anterior, extensor hallucis longus (EHL), extensor digitorum longus (EDL) and peroneus tertius, which are innervated by the deep peroneal nerve. The lateral compartment includes the peroneus longus and peroneus brevis, which assist in foot eversion and are innervated by the superficial peroneal nerve. The superficial posterior compartment includes the gastrocnemius, soleus, and plantaris, which assist in plantarflexion and are innervated by the tibial nerve. The deep posterior compartment is made up of the popliteus, flexor hallucis longus (FHL), flexor digitorum longus (FDL), and tibialis posterior, which mostly assist in plantarflexion and are innervated similarly by the tibial nerve. This file was created from the file STS_014.

    Free

  5. Version 1.0.0

    6 downloads

    This is the normal left leg bone model (including foot) of a 56 year old male with right anterior thigh pleomorphic leiomyosarcoma. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The leg includes the area between the knee and the ankle and houses the tibia and fibula. The proximal tibia includes the medial plateau (which is concave) and the lateral plateau (which is convex). The Proximal tibia has a 7-10 degree posterior slope. The tibial tuberosity is located on the anterior proximal tibia, which is where the patellar tendon attaches. On the anteromedial surface of the tibia is Gerdy's tubercle, where the sartorius, gracilis, and semitendinosus attach. The distal tibia creates the superior and medial (plafond and medial malleolus) of the ankle joint. The proximal fibula is the attachment for the posterolateral corner structures of the knee joint. The peroneal nerve wraps around the fibular neck. The distal fibula is the lateral malleolus and a common site for ankle fractures. This model was created from the file STS_014.

    Free

  6. Version 1.0.0

    4 downloads

    This is the normal right leg bone model (including foot) of a 56 year old male with right anterior thigh pleomorphic leiomyosarcoma. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The leg includes the area between the knee and the ankle and houses the tibia and fibula. The proximal tibia includes the medial plateau (which is concave) and the lateral plateau (which is convex). The Proximal tibia has a 7-10 degree posterior slope. The tibial tuberosity is located on the anterior proximal tibia, which is where the patellar tendon attaches. On the anteromedial surface of the tibia is Gerdy's tubercle, where the sartorius, gracilis, and semitendinosus attach. The distal tibia creates the superior and medial (plafond and medial malleolus) of the ankle joint. The proximal fibula is the attachment for the posterolateral corner structures of the knee joint. The peroneal nerve wraps around the fibular neck. The distal fibula is the lateral malleolus and a common site for ankle fractures. This model was created from the file STS_014.

    Free

  7. Version 1.0.0

    1 download

    This model is the bilateral thigh skin rendering of a 56 year old male with a pleomorphic leiomyosarcoma of the anterior compartment of the right thigh. The patient underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy treatment and was found to have an intermediate grade lesion at the time of diagnosis. However, the tumor metastasized to his lungs, and the patient died 2.5 years after diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. Leiomyosarcomas are aggressive soft tissue malignancies that are thought to arise from the smooth muscle cells lining small blood vessels. Pleomorphism is the pathologic description of cells and nuclei with variability in size, shape and staining, which is characteristic of a malignant neoplasm. Pleomorphic leiomyosarcoma is an aggressive form of leiomyosarcoma, accounting for approximately 10% of these tumors. The mean age of occurrence is 58 years old, with a range from 31-89 years. These usually occur in the extremities, but may also present in the retroperitoneum/abdominal cavity, chest/abdominal wall, and, occasionally, the scalp. On biopsy, the definition of pleomorphic leiomyosarcoma is the presence of pleomorphic cells in at last two-thirds of the cut section and at least one section of positive staining for smooth muscle. Treatment is early wide resection of the primary lesion and neo-adjuvant or adjuvant chemotherapy and radiation. Tumors may metastasize to the lung. A large primary tumor and presence in the retroperitoneal cavity are poor predictive factors, and about 65% of patients succumb to the disease. This model was created from the file STS_014.

    Free

  8. Version 1.0.0

    2 downloads

    This model is the bilateral thigh muscle rendering of a 56 year old male with a pleomorphic leiomyosarcoma of the anterior compartment of the right thigh. The patient underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy treatment and was found to have an intermediate grade lesion at the time of diagnosis. However, the tumor metastasized to his lungs, and the patient died 2.5 years after diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. Leiomyosarcomas are aggressive soft tissue malignancies that are thought to arise from the smooth muscle cells lining small blood vessels. Pleomorphism is the pathologic description of cells and nuclei with variability in size, shape and staining, which is characteristic of a malignant neoplasm. Pleomorphic leiomyosarcoma is an aggressive form of leiomyosarcoma, accounting for approximately 10% of these tumors. The mean age of occurrence is 58 years old, with a range from 31-89 years. These usually occur in the extremities, but may also present in the retroperitoneum/abdominal cavity, chest/abdominal wall, and, occasionally, the scalp. On biopsy, the definition of pleomorphic leiomyosarcoma is the presence of pleomorphic cells in at last two-thirds of the cut section and at least one section of positive staining for smooth muscle. Treatment is early wide resection of the primary lesion and neo-adjuvant or adjuvant chemotherapy and radiation. Tumors may metastasize to the lung. A large primary tumor and presence in the retroperitoneal cavity are poor predictive factors, and about 65% of patients succumb to the disease. This model was created from the file STS_014.

    Free

×
×
  • Create New...