Jump to content

Search the Community

Showing results for tags 'lower extremity'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Blogs

  • Embodi3d Test Blog
  • 3D Printing in Medicine
  • Cool Medical 3D-Printing
  • 3D Bio Printing by Paige Anne Carter
  • SSchoppert's Blog
  • Additive Manufacturing in Medicine
  • biomedical 3D printing
  • Bryce's Blog
  • Chris Leggett
  • 3D Models Help Improve Surgical Precision, Reduce Operating Time
  • Desktop 3D Printing in Medical Imaging
  • 3D Printing: Radiology corner
  • The Embodi3D.com Blog
  • descobar3d's Blog
  • 3D Printing in Anthropology
  • Learn to 3D Print: Basic Tools from software to printers
  • 3D printing for bio-medicine
  • 3D Biomedical Printing - by Jacob M.
  • Valchanov's Blog
  • Deirdre_Manion-Fischer's Blog
  • Matt Johnson's Biomedical 3D Printing Blog
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Mike at Medical Models
  • TOP TEN THE MOST DOWNLOADED EMBODI3D

Forums

  • Biomedical 3D Printing
    • Hardware and 3D Printers
    • democratiz3D®
    • Software
    • Clinical applications
    • 3D Printable Models
    • Medical Imaging: CT, MRI, US
    • Science and Research
    • News and Trending Topics
    • Education, Conferences, Meetings, Events
  • General
    • Announcements
    • Questions and Answers
    • Suggestions and Feedback
    • Member Lounge (members only)
  • Classifieds, Goods and Services
    • General Classifieds - members post free
    • Services needed
    • Services offered
    • Stuff for sale/needed
    • Post a Job
    • Looking for work - visible only to members

Categories

  • democratiz3D® Processing
  • Bones
    • Skull and Head
    • Dental, Orthodontic, Maxillofacial
    • Spine and Pelvis
    • Extremity, Upper (Arm)
    • Extremity, Lower (Leg)
    • Thorax and Ribs
    • Whole body
    • Skeletal tumors, fractures and bony pathology
  • Muscles
    • Head and neck muscles
    • Extremity, Lower (Leg) Muscles
    • Extremity, Upper (Arm) Muscles
    • Thorax and Ribs Muscles
    • Abdomen and Pelvis muscles
    • Whole body Muscles
    • Muscular tumors and sarcomas
  • Cardiac and Vascular
    • Heart
    • Congenital Heart Defects
    • Aorta
    • Mesenteric and abdominal arteries
    • Veins
  • Organs of the Body
    • Brain and nervous system
    • Kidneys
    • Lungs
    • Liver
    • Other organs
  • Skin
  • Veterinary
    • Dogs
    • Cats
    • Other
  • Science and Research
    • Paleontology
    • Anthropology
    • Misc Research
  • Miscellaneous
    • Formlabs
  • Medical CT Scan Files
    • Skull, Head, and Neck CTs
    • Dental, Orthodontic, Maxillofacial CTs
    • Thorax and Ribs CTs
    • Abdomen and Pelvis CTs
    • Extremity, Upper (Arm) CTs
    • Extremity, Lower (Leg) CTs
    • Spine CTs
    • Whole Body CTs
    • MRIs
    • Ultrasound
    • Veterinary/Animals
    • Other

Product Groups

  • Premium Services
  • Physical Print Quotes

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Name


Secondary Email Address


Interests

Found 49 results

  1. Vascular Training Models Venous Models: IVC Filter Deployment/Retrieval Model: VIVC01000M Iliac Vein Stenosis Extension Model: VIVC01E2SC Gonadal Vein Embolization Extension Model: VGON01000C Femoral Vein Extension Model: VFEM01000C Flexible SVC Extension Model: VSVC01000F Vascular Training Models Arterial Models: Extendable Abdominal Aorta Model: AABD02000C Upper and Lower Leg Extension Model: AALE01000C Abdominal Aortic Aneurysm EVAR Model: AAAA01000C Stand-Alone Abdominal Aorta Model: AABD01000C Description: The upper and lower leg extension model contains all the major arterial structures of the left leg from the hip to the level of the ankle. When connected to the extendable abdominal aorta model (Model # AABD02000C) or the AAA EVAR model (Model #AAAA01000C), complete arterial anatomy from the diaphragm to the ankles can be simulated. An SFA stenosis is incorporated in the model to allow stent placement. Detailed tibial arteries are included which can be catheterized. The model is ideal for demonstrating lower extremity arterial interventions. Contact us for model information and prices
    Procedures that this model can teach or practice: Superficial femoral artery stenting Catheter atherectomy Superficial femoral artery Tibial arteries Balloon angioplasty (low-pressure) Lower extremity angiography Compatibility: Extendable Abdominal Aorta Model (# AABD02000C) Abdominal Aortic Aneurysm EVAR Model (# AAAA01000C) For questions and pricing contact us. Please include the model name and number with your inquiry: Upper and Lower Leg Extension Model (#AALE01000C)
  2. Version 1.0.0

    101 downloads

    Left Knee Joint 3D Printable STL File Converted From CT Scan - stl file processed The knee joint is formed by three bones: the femur, the tibia and the patella. the knee joint is the largest synovial joint and provides the flexion and extension movements of the leg as well as relative medial and lateral rotations while in relative flexion. The knee joint articulations are two condylar joints between the femur and the tibia as well as a joint between the patella and the femur. Although the fibula is closely related to the knee joint but it doesn't share in articulation. The knee joint is also formed by some ligaments and cartilage called (menisci) which are best imaged by MRI. This 3D model was created from the file STS_045. The source CT scan used to create this model can be found here.

    Free

  3. Version 1.0.0

    6 downloads

    This 3D model represents a case of high grade leiomyosarcoma implicating the left groin region of a 24 years old female. The patient was treated by surgical excision follower by chemotherapy as well as radiotherapy. A cross sectional CT image is attached showing the lesion in axial, coronal and sagittal planes. Leiomyosarcoma (LMS) is a very rare malignant neoplasm that arises from smooth muscle cells and is considered to be the malignant extension of leiomyoma. Leiomyosarcoma is classified under soft tissue tumours and represents around 8% of all soft tissue malignant tumours. Common locations affected by leiomyosarcoma are: the uterus, retroperitoneum, stomach, oesophagus, small intestine and generally anywhere with smooth muscles. Leiomyosarcoma appears heterogeneous in CT with common central attenuation representing necrosis. This 3D model was created from the file STS_036 The source CT scan used to create this model can be found here.

    Free

  4. Version 1.0.0

    17 downloads

    The hip joint is a large synovial socket and ball joint which is formed by the femoral head (the ball) and the acetabulum (the socket). The acetabulum is is formed by pelvic bones; the ilium, the ischium and the pubis. The hip joint represents the articulation between the lower extremity and the axial skeleton and allows a high degree of mobility while being stable. This 3D model was created from the file STS_044. The source CT scan used to create this model can be found here.

    Free

  5. Version 1.0.0

    19 downloads

    The hip joint is a large synovial socket and ball joint which is formed by the femoral head (the ball) and the acetabulum (the socket). The acetabulum is is formed by pelvic bones; the ilium, the ischium and the pubis. The hip joint represents the articulation between the lower extremity and the axial skeleton and allows a high degree of mobility while being stable. This 3D model was created from the file STS_044. The source CT scan used to create this model can be found here.

    Free

  6. Version 1.0.0

    48 downloads

    The knee joint is formed by three bones: the femur, the tibia and the patella. the knee joint is the largest synovial joint and provides the flexion and extension movements of the leg as well as relative medial and lateral rotations while in relative flexion. The knee joint articulations are two condylar joints between the femur and the tibia as well as a joint between the patella and the femur. Although the fibula is closely related to the knee joint but it doesn't share in articulation. The knee joint is also formed by some ligaments and cartilage called (menisci) which are best imaged by MRI. This 3D model was created from the file STS_045. The source scan be be found here.

    Free

  7. Version 1.0.0

    5 downloads

    This 3D model represents a case of low grade myxoid liposarcoma affecting the right thigh muscle of a 46 years old male. The model shows a comparison of both lower limbs muscle with a notable enlargement / swelling of the right thigh muscles. The tumor is not causing a significant muscular deformity, therefor a cross sectional CT image is attached showing the lesion in axial, coronal and sagittal planes. Myxoid liposarcoma is the second commonest for of liposarcoma and usually represents an intermediate grade. Liposarcomas in general are mostly seen in extremities and the most common affected muscles are of the thigh. This 3D model was created from the file STS_044. The source scan can be found here.

    Free

  8. Version 1.0.0

    9 downloads

    This 3D model represents a case of high grade extraskeletal osteosarcoma affecting the left adductor muscle of a 27 years old male. The patient was treated by surgical excision follower by chemotherapy. A cross sectional CT image is attached showing the lesion in axial, coronal and sagittal planes. Extraskeletal osteosarcoma (ESOS) is one of the rare malignant neoplasms that affects the mesenchymal tissues such as the retroperitoneum as well as the soft tissue of the extremities with no significant connection to the related bones. Extraskeletal osteosarcoma usually affects people between 40 years and 80 years and is more common in males with a documented risk factor which is radiation exposure. The common presentation is enlarged or swollen soft tissue which could be painful or not. Extraskeletal osteosarcoma is diagnosed by plain x-ray, CT or MRI as the soft tissue shows variable calcification. The most common affected sites are the lower extremities followed by upper extremities and retroperitoneum. Most of patients are presented with metastasis at time of diagnosis which leads to a generally poor prognosis. The usual treatment is surgical excision of the primary tumor as the tumor is insensitive to chemotherapy or radiotherapy. This 3D model was created from the file STS_045. The source scan can be found here.

    Free

  9. Version 1.0.0

    7 downloads

    This 3D model represents a case of high grade Extraskeletal osteosarcoma affecting the left adductor muscle of a 27 years old male. The patient was treated by surgical excision follower by chemotherapy. Extraskeletal osteosarcoma (ESOS) is one of the rare malignant neoplasms that affects the mesenchymal tissues such as the retroperitoneum as well as the soft tissue of the extremities with no significant connection to the related bones. Extraskeletal osteosarcoma usually affects people between 40 years and 80 years and is more common in males with a documented risk factor which is radiation exposure. The common presentation is enlarged or swollen soft tissue which could be painful or not. Extraskeletal osteosarcoma is diagnosed by plain x-ray, CT or MRI as the soft tissue shows variable calcification. The most common affect sites are the lower extremities followed by upper extremities and retroperitoneum. Most of patients are presented with metastasis at time of diagnosis which leads to a generally poor prognosis. The usual treatment is surgical excision of the primary tumor as the tumor is insensitive to chemotherapy or radiotherapy. A model created from this scan can be found here.

    Free

  10. Version 1.0.0

    6 downloads

    This model is the left thigh muscle rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient unfortunately died 9.5 months after diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. Myxoid fibrosarcoma (or myxoid MFH) is the most common subtype of MFH, at about 10%-20% of cases. Clinically, the tumor presents as a deep, slow-growing, painless mass. It is located more commonly in the lower extremities and retroperitoneum. Imaging on MRI demonstrates a mass with low signal intensity on T1-weighting imaging, and high signal intensity on T2-weighted imaging. On histology, a myxoid background is present with a storiform (or cartwheel) pattern seen on low-power imaging, seen in fibrosarcomas. A “myxoid background” is composed of a clear, mucoid substance. Treatment includes radiation, wide surgical resection, and chemotherapy in selected cases. However, the 5-year survival is 50%-60% depending on size, grade, depth and presence of metastasis. The term “malignant fibrous histiocytoma” was coined in the 1960s by Margaret R. Murray when histology a sarcoma demonstrated an appearance like histiocytes, with characteristics of phagocytosis and a pleomorphic pattern. With further research, this entity was identified to have a wider range of appearances with a fibrous characteristic. Today, these sarcomas are known as “pleomorphic sarcomas.” Recently, a change in the understanding of soft tissue tumors has purported that MFH is not a specific type of cancer, but a common morphologic pattern shared by unrelated tumors. One school of thought states that this morphologic pattern is shared by tumors as a common final pathway in cancer progression whereas another school of thought believes that true pleomorphic sarcomas are the result of a transformation from mesenchymal stem cells. Future research into understanding the pathway of these sarcomas and progression will help to target specific therapies and, hopefully, eventual cures. This model was created from the file STS_023.

    Free

  11. Version 1.0.0

    12 downloads

    This model is the left foot and ankle muscle rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient unfortunately died 9.5 months after diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The primary motions of the ankle are dorsiflexion, plantarflexion, inversion and eversion. However with the addition of midfoot motion (adduction, and abduction), the foot may supinate (inversion and adduction) or pronate (eversion and abduction). In order to accomplish these motions, muscles outside of the foot (extrinsic) and muscles within the foot (intrinsic) attach throughout the foot, crossing one or more joints. Laterally, the peroneus brevis and tertius attach on the proximal fifth metatarsal to evert the foot. The peroneus longus courses under the cuboid to attach on the plantar surface of the first metatarsal, acting as the primary plantarflexor of the first ray and, secondarily, the foot. Together, these muscles also assist in stabilizing the ankle for patients with deficient lateral ankle ligaments from chronic sprains. Medially, the posterior tibialis inserts on the plantar aspect of the navicular cuneiforms and metatarsal bases, acting primarily to invert the foot and secondarily to plantarflex the foot. The flexor hallucis longus inserts on the base of the distal phalanx of the great toe to plantarflex the great toe, and the flexor digitorum inserts on the bases of the distal phalanges of the lesser four toes, acting to plantarflex the toes. The gastrocnemius inserts on the calcaneus as the Achilles tendon and plantarflexes the foot. Anteriorly, the tibialis anterior inserts on the dorsal medial cuneiform and plantar aspect of the first metatarsal base as the primary ankle dorsiflexor and secondary inverter. The Extensor hallucis longus and extensor digitorum longus insert on the dorsal aspect of the base of the distal phalanges to dorsiflex the great toe and lesser toes, respectively. This model was created from the file STS_023.

    Free

  12. Version 1.0.0

    9 downloads

    This model is the left foot and ankle skin rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient unfortunately died 9.5 months after diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. Topographical landmarks of the foot and ankle consist of muscular, tendinous, and bony structures. Proximally, the superficial muscles of the anterior (tibialis anterior), lateral (peroneals) and posterior (gastrocnemius) compartments may be palpated. Anteriorly, the tibialis anterior tendon crosses the ankle joint and is used as a landmark for ankle joint injections and aspirations, where the practitioner will place the needle just lateral to the tendon. Posteriorly, the gastrocnemius and soleus converge to form the Achilles tendon. Ruptures of the tendon as well as tendinous changes due to Achilles tendinopathy may be palpated. At the level of the ankle joint, the joint line, medial malleolus (distal tibia) and lateral malleolus (distal fibula) may be palpated. The extensor hallucis longus and extensor digitorum longus tendons are visible at the surface of the dorsal foot. The extensor digitorum brevis muscle belly is seen on the dorsum of the lateral foot. On the plantar foot, the plantar fascia may be palpated. Nodules associated with plantar fascial fibromatosis may be palpated here. Plantar fasciitis is also diagnosed when pain is associated with palpation of the insertion of the plantar fascia on the medial heel. Other common pathologies on the plantar foot are ulcerations associated with diabetic neuropathy and other neuropathic conditions. This model was created from the file STS_023.

    Free

  13. Version 1.0.0

    9 downloads

    This model is the right foot and ankle skin rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient unfortunately died 9.5 months after diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. Topographical landmarks of the foot and ankle consist of muscular, tendinous, and bony structures. Proximally, the superficial muscles of the anterior (tibialis anterior), lateral (peroneals) and posterior (gastrocnemius) compartments may be palpated. Anteriorly, the tibialis anterior tendon crosses the ankle joint and is used as a landmark for ankle joint injections and aspirations, where the practitioner will place the needle just lateral to the tendon. Posteriorly, the gastrocnemius and soleus converge to form the Achilles tendon. Ruptures of the tendon as well as tendinous changes due to Achilles tendinopathy may be palpated. At the level of the ankle joint, the joint line, medial malleolus (distal tibia) and lateral malleolus (distal fibula) may be palpated. The extensor hallucis longus and extensor digitorum longus tendons are visible at the surface of the dorsal foot. The extensor digitorum brevis muscle belly is seen on the dorsum of the lateral foot. On the plantar foot, the plantar fascia may be palpated. Nodules associated with plantar fascial fibromatosis may be palpated here. Plantar fasciitis is also diagnosed when pain is associated with palpation of the insertion of the plantar fascia on the medial heel. Other common pathologies on the plantar foot are ulcerations associated with diabetic neuropathy and other neuropathic conditions. This model was created from the file STS_023.

    Free

  14. Version 1.0.0

    30 downloads

    This model is the right foot and ankle bone rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient unfortunately died 9.5 months after diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The ankle is a hinge (or ginglymus) joint made of the distal tibia (tibial plafond, medial and posterior malleoli) superiorly and medially, the distal fibula (lateral malleolus) laterally and the talus inferiorly. Together, these structures form the ankle “mortise”, which refers to the bony arch. Stability is provided by the anterior talofibular ligament (ATFL), calcaneofibular ligament (CFL), and posterior talofibular ligament (PTFL) laterally, and the superficial and deep deltoid ligaments medially. The ankle is one of my most common sites of musculoskeletal injury, including ankle fractures and ankle sprains, due to the ability of the joint to invert and evert. The most common ligament involved in the ATFL. Radiographic analysis of an ankle after injury should include the so-called “mortise view”, upon which measurements can be made to determine congruity of the ankle joint. Normal measurements include >1 mm tibiofibular overlap, </= 4mm medial clear space, and <6 mm of tibiofibular clear space. The talocrural ankle is measured by the bisection of a line through the tibial anatomical axis and another line through the tips of the malleoli. Shortening of the lateral malleolus can lead to an increased talocrural angle. The foot is commonly divided into three segments: hindfoot, midfoot, and forefoot. These sections are divided by the transverse tarsal joint (between the talus and calcaneus proximally and navicular and cuboid distally), and the tarsometatarsal joint (between the cuboids and cuneiforms proximally and the metatarsals distally). The first tarsometatarsal joint (medially) is termed the “Lisfranc” joint, and is the site of the Lisfranc injury seen primarily in athletic injuries. This model was created from the file STS_023.

    Free

  15. Version 1.0.0

    2 downloads

    This model is the left lower extremity skin rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. Myxoid fibrosarcoma (or myxoid MFH) is the most common subtype of MFH, at about 10%-20% of cases. Clinically, the tumor presents as a deep, slow-growing, painless mass. It is located more commonly in the lower extremities and retroperitoneum. Imaging on MRI demonstrates a mass with low signal intensity on T1-weighting imaging, and high signal intensity on T2-weighted imaging. On histology, a myxoid background is present with a storiform (or cartwheel) pattern seen on low-power imaging, seen in fibrosarcomas. A “myxoid background” is composed of a clear, mucoid substance. Treatment includes radiation, wide surgical resection, and chemotherapy in selected cases. However, the 5-year survival is 50%-60% depending on size, grade, depth and presence of metastasis. The term “malignant fibrous histiocytoma” was coined in the 1960s by Margaret R. Murray when histology a sarcoma demonstrated an appearance like histiocytes, with characteristics of phagocytosis and a pleomorphic pattern. With further research, this entity was identified to have a wider range of appearances with a fibrous characteristic. Today, these sarcomas are known as “pleomorphic sarcomas.” Recently, a change in the understanding of soft tissue tumors has purported that MFH is not a specific type of cancer, but a common morphologic pattern shared by unrelated tumors. One school of thought states that this morphologic pattern is shared by tumors as a common final pathway in cancer progression whereas another school of thought believes that true pleomorphic sarcomas are the result of a transformation from mesenchymal stem cells. Future research into understanding the pathway of these sarcomas and progression will help to target specific therapies and, hopefully, eventual cures. This model was created from the file STS_022.

    Free

  16. Version 1.0.0

    6 downloads

    This model is the right thigh skin rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The thigh is divided into three compartments: the anterior, posterior, and adductor. After a femoral fracture or vascular injury in the thigh, increasing pressure within a compartment may threaten to compromise blood flow to muscles within the compartment, a syndrome known as “compartment syndrome.” Compartment syndrome is diagnosed clinically as “pain out of proportion to exam.” In patients that a clinical exam may not be obtained, such as those who are intubated or with a traumatic brain injury, a Stryker needle of each compartment may be performed. The diagnosis of compartment syndrome is defined as pressures within 30 mmHg of diastolic blood pressure. Compartment syndrome is an emergency and thigh fasciotomies must be performed immediately to prevent compromise of muscles within the compartment at risk. Thigh fasciotomies may be performed through a single incision for release of the anterior and posterior compartments, or a medial incision for decompression of the adductor compartment (less common). For the single incision technique, the incision is created laterally, and the fascia lata is incised. This exposes the anterior compartment, which is decompressed. The lateral intermuscular septum is then incised to decompress the posterior compartment. This model was created from the file STS_022.

    Free

  17. Version 1.0.0

    27 downloads

    This model is the right thigh muscle rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The thigh is divided into three compartments: the anterior, posterior, and adductor. The anterior compartment contains the “quadriceps muscles”, made up of the vastus lateralis, vastus medialis vastus intermedius, and rectus femoris, and the sartorius. These muscles are innervated by the femoral nerve (L3-L4), and act to extend the leg. The Sartorius muscle originates at the ASIS and crosses anterior to the quadriceps muscle to insert on the medial tibia in the pes anserinus. The posterior compartment contains the “hamstrings”, made up of the semitendinosus, semimembranosus, and short and long heads of the biceps femoris. These muscles act to flex the leg. All of these muscles are innervated by the sciatic nerve (tibial division) except for the short head of the biceps femoris, which is innervated by the sciatic nerve (peroneal division). The adductor compartment contains the adductor longus, adductor brevis, adductor magnus, and gracilis, which act to adduct the thigh. These muscles are innervated by the obturator, and the adductor magnus has dual innervation with the sciatic nerve. In addition, the obturator externus (a thigh external rotator) and pectineus muscle (thigh flexor and adductor) are located within this compartment. This model was created from the file STS_022.

    Free

  18. Version 1.0.0

    3 downloads

    This model is the left lower extremity muscle rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. Myxoid fibrosarcoma (or myxoid MFH) is the most common subtype of MFH, at about 10%-20% of cases. Clinically, the tumor presents as a deep, slow-growing, painless mass. It is located more commonly in the lower extremities and retroperitoneum. Imaging on MRI demonstrates a mass with low signal intensity on T1-weighting imaging, and high signal intensity on T2-weighted imaging. On histology, a myxoid background is present with a storiform (or cartwheel) pattern seen on low-power imaging, seen in fibrosarcomas. A “myxoid background” is composed of a clear, mucoid substance. Treatment includes radiation, wide surgical resection, and chemotherapy in selected cases. However, the 5-year survival is 50%-60% depending on size, grade, depth and presence of metastasis. The term “malignant fibrous histiocytoma” was coined in the 1960s by Margaret R. Murray when histology a sarcoma demonstrated an appearance like histiocytes, with characteristics of phagocytosis and a pleomorphic pattern. With further research, this entity was identified to have a wider range of appearances with a fibrous characteristic. Today, these sarcomas are known as “pleomorphic sarcomas.” Recently, a change in the understanding of soft tissue tumors has purported that MFH is not a specific type of cancer, but a common morphologic pattern shared by unrelated tumors. One school of thought states that this morphologic pattern is shared by tumors as a common final pathway in cancer progression whereas another school of thought believes that true pleomorphic sarcomas are the result of a transformation from mesenchymal stem cells. Future research into understanding the pathway of these sarcomas and progression will help to target specific therapies and, hopefully, eventual cures. This model was created from the file STS_022.

    Free

  19. Version 1.0.0

    1 download

    This model is the left thigh muscle rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. Myxoid fibrosarcoma (or myxoid MFH) is the most common subtype of MFH, at about 10%-20% of cases. Clinically, the tumor presents as a deep, slow-growing, painless mass. It is located more commonly in the lower extremities and retroperitoneum. Imaging on MRI demonstrates a mass with low signal intensity on T1-weighting imaging, and high signal intensity on T2-weighted imaging. On histology, a myxoid background is present with a storiform (or cartwheel) pattern seen on low-power imaging, seen in fibrosarcomas. A “myxoid background” is composed of a clear, mucoid substance. Treatment includes radiation, wide surgical resection, and chemotherapy in selected cases. However, the 5-year survival is 50%-60% depending on size, grade, depth and presence of metastasis. The term “malignant fibrous histiocytoma” was coined in the 1960s by Margaret R. Murray when histology a sarcoma demonstrated an appearance like histiocytes, with characteristics of phagocytosis and a pleomorphic pattern. With further research, this entity was identified to have a wider range of appearances with a fibrous characteristic. Today, these sarcomas are known as “pleomorphic sarcomas.” Recently, a change in the understanding of soft tissue tumors has purported that MFH is not a specific type of cancer, but a common morphologic pattern shared by unrelated tumors. One school of thought states that this morphologic pattern is shared by tumors as a common final pathway in cancer progression whereas another school of thought believes that true pleomorphic sarcomas are the result of a transformation from mesenchymal stem cells. Future research into understanding the pathway of these sarcomas and progression will help to target specific therapies and, hopefully, eventual cures. This model was created from the file STS_022.

    Free

  20. Version 1.0.0

    24 downloads

    This model is the left lower extremity bone rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing The lower extremity consists of the femur, tibia, fibula, and foot. The femur has an anterior bow of differing degrees, which is important to understand when fixing a femur fracture with an intramedullary nail to not penetrate the anterior cortex. Distally, the femur includes the medial and lateral femoral condyles, which articulate with the proximal tibia to form the knee joint, as well as the trochlea anteriorly, which articulates with the patella. The proximal tibia includes the medial plateau (which is concave) and the lateral plateau (which is convex). The Proximal tibia has a 7-10 degree posterior slope. On the anterior proximal tibia, the tibial tuberosity, where the patellar tendon attaches. On the anteromedial surface of the tibia is Gerdy's tubercle, where the sartorius, gracilis, and semitendinosus attach. The distal tibia creates the superior and medial (plafond and medial malleolus) of the ankle joint. The proximal fibula is the attachment for the posterolateral corner structures of the knee joint. The peroneal nerve wraps around the fibular neck. The distal fibula is the lateral malleolus and a common site for ankle fractures. This model was created from the file STS_022.

    Free

  21. Version 1.0.0

    16 downloads

    This model is the left leg bone rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The leg includes the area between the knee and the ankle and houses the tibia and fibula. The proximal tibia includes the medial plateau (which is concave) and the lateral plateau (which is convex). The Proximal tibia has a 7-10 degree posterior slope. The tibial tuberosity is located on the anterior proximal tibia, which is where the patellar tendon attaches. On the anteromedial surface of the tibia is Gerdy's tubercle, where the sartorius, gracilis, and semitendinosus attach. The distal tibia creates the superior and medial (plafond and medial malleolus) of the ankle joint. The proximal fibula is the attachment for the posterolateral corner structures of the knee joint. The peroneal nerve wraps around the fibular neck. The distal fibula is the lateral malleolus and a common site for ankle fractures. The ankle is a hinge (or ginglymus) joint made of the distal tibia (tibial plafond, medial and posterior malleoli) superiorly and medially, the distal fibula (lateral malleolus) laterally and the talus inferiorly. Together, these structures form the ankle “mortise”, which refers to the bony arch. Normal range of motion is 20 degrees dorsiflexion and 50 degrees plantarflexion. Stability is provided by the anterior talofibular ligament (ATFL), calcaneofibular ligament (CFL), and posterior talofibular ligament (PTFL) laterally, and the superficial and deep deltoid ligaments medially. The ankle is one of my most common sites of musculoskeletal injury, including ankle fractures and ankle sprains, due to the ability of the joint to invert and evert. The most common ligament involved in the ATFL. The foot is commonly divided into three segments: hindfoot, midfoot, and forefoot. These sections are divided by the transverse tarsal joint (between the talus and calcaneus proximally and navicular and cuboid distally), and the tarsometatarsal joint (between the cuboids and cuneiforms proximally and the metatarsals distally). The first tarsometatarsal joint (medially) is termed the “Lisfranc” joint, and is the site of the Lisfranc injury seen primarily in athletic injuries. This model was created from the file STS_022.

    Free

  22. Version 1.0.0

    9 downloads

    This model is the right leg skin rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. Landmarks of the lower extremity consist of bony and muscular landmarks. Proximally, the extensor mechanism consists of the quadriceps tendon, patella, and the tibial tuberosity, which is located on the anterior proximal tibia, where the patellar tendon attaches. On the anteromedial surface of the tibia is Gerdy's tubercle, where the sartorius, gracilis, and semitendinosus attach. Laterally, the head of the fibula may be palpated, which is the attachment for the posterolateral corner structures of the knee joint. The peroneal nerve wraps around the fibular neck, and a tinel’s sign may be elicited due to its superficial position at this location. Distally, the anterior ankle joint may be palpated. Pain with palpation may be indicative of osteoarthritis if general or an osteochondral defect if localized. The medial and lateral malleoli are located on either side of the tibiotalar joint, respectively and are the site of common ankle fractures. Posteriorly, the Achilles tendon inserts on the calcaneus. A defect along this tendon may be a sign of a tendon rupture. The superficial peroneal nerve can possibly be isolated on the lateral aspect of the dorsal foot with full plantarflexion of the fourth ray. Topographical landmarks of the foot and ankle consist of muscular, tendinous, and bony structures. Proximally, the superficial muscles of the anterior (tibialis anterior), lateral (peroneals) and posterior (gastrocnemius) compartments may be palpated. Anteriorly, the tibialis anterior tendon crosses the ankle joint and is used as a landmark for ankle joint injections and aspirations, where the practitioner will place the needle just lateral to the tendon. Posteriorly, the gastrocnemius and soleus converge to form the Achilles tendon. Ruptures of the tendon as well as tendinous changes due to Achilles tendinopathy may be palpated. At the level of the ankle joint, the joint line, medial malleolus (distal tibia) and lateral malleolus (distal fibula) may be palpated. The extensor hallucis longus and extensor digitorum longus tendons are visible at the surface of the dorsal foot. The extensor digitorum brevis muscle belly is seen on the dorsum of the lateral foot. On the plantar foot, the plantar fascia may be palpated. Nodules associated with plantar fascial fibromatosis may be palpated here. Plantar fasciitis is also diagnosed when pain is associated with palpation of the insertion of the plantar fascia on the medial heel. Other common pathologies on the plantar foot are ulcerations associated with diabetic neuropathy and other neuropathic conditions. This model was created from the file STS_022.

    Free

  23. Version 1.0.0

    14 downloads

    This model is the right leg muscle rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The lower leg is divided into four muscle compartments: the anterior, lateral, superficial posterior, and deep posterior compartments. The anterior compartment is made from the dorsiflexors, including the tibialis anterior, extensor hallucis longus (EHL), extensor digitorum longus (EDL) and peroneus tertius, which are innervated by the deep peroneal nerve. The lateral compartment includes the peroneus longus and peroneus brevis, which assist in foot eversion and are innervated by the superficial peroneal nerve. The superficial posterior compartment includes the gastrocnemius, soleus, and plantaris, which assist in plantarflexion and are innervated by the tibial nerve. The deep posterior compartment is made up of the popliteus, flexor hallucis longus (FHL), flexor digitorum longus (FDL), and tibialis posterior, which mostly assist in plantarflexion and are innervated similarly by the tibial nerve. The primary motions of the ankle are dorsiflexion, plantarflexion, inversion and eversion. However, with the addition of midfoot motion (adduction, and abduction), the foot may supinate (inversion and adduction) or pronate (eversion and abduction). In order to accomplish these motions, muscles outside of the foot (extrinsic) and muscles within the foot (intrinsic) attach throughout the foot, crossing one or more joints. Laterally, the peroneus brevis and tertius attach on the proximal fifth metatarsal to evert the foot. The peroneus longus courses under the cuboid to attach on the plantar surface of the first metatarsal, acting as the primary plantarflexor of the first ray and, secondarily, the foot. Together, these muscles also assist in stabilizing the ankle for patients with deficient lateral ankle ligaments from chronic sprains. Medially, the posterior tibialis inserts on the plantar aspect of the navicular cuneiforms and metatarsal bases, acting primarily to invert the foot and secondarily to plantarflex the foot. The flexor hallucis longus inserts on the base of the distal phalanx of the great toe to plantarflex the great toe, and the flexor digitorum inserts on the bases of the distal phalanges of the lesser four toes, acting to plantarflex the toes. The gastrocnemius inserts on the calcaneus as the Achilles tendon and plantarflexes the foot. Anteriorly, the tibialis anterior inserts on the dorsal medial cuneiform and plantar aspect of the first metatarsal base as the primary ankle dorsiflexor and secondary inverter. The Extensor hallucis longus and extensor digitorum longus insert on the dorsal aspect of the base of the distal phalanges to dorsiflex the great toe and lesser toes, respectively. This model was created from the file STS_022.

    Free

  24. Version 1.0.0

    12 downloads

    This model is the right knee muscle rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The knee is a hinge joint that does not have true bony stabilization, so it requires soft tissue static and dynamic stabilizers to prevent excess motion through the joint. In addition, the knee goes through a “screw home” mechanism in which the tibia rotates externally and “locks” into extension during the last 15-20 degrees of extension. Multiple structures, therefore, are needed to work in concert to prevent excess strain through this joint during these daily motions. On the medial aspect of the knee, the static stabilizers consist of the superficial and deep medial collateral ligaments (MCL) and the posterior oblique ligament (POL). The dynamic stabilizers are the semimembranosus, vastus medialis, medial gastrocnemius, and pes tendons (semitendinosus, gracilis, and sartorius). The lateral stabilizers are best known as the posterolateral corner, and consist of the static stabilizers (lateral collateral ligament (LCL), iliotibial band (ITB), arcuate ligament), and dynamic stabilizers (popliteus, biceps femoris, lateral gastrocnemius). Inside the joint, the anterior cruciate ligament provides resistance to anterior tibial translation varus, and internal rotation, whereas the posterior cruciate ligament provides resistance to posterior tibial translation, varus, valgus, and external rotation. This model was created from the file STS_022.

    Free

  25. Version 1.0.0

    6 downloads

    This model is the left leg muscle rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The lower leg is divided into four muscle compartments: the anterior, lateral, superficial posterior, and deep posterior compartments. The anterior compartment is made from the dorsiflexors, including the tibialis anterior, extensor hallucis longus (EHL), extensor digitorum longus (EDL) and peroneus tertius, which are innervated by the deep peroneal nerve. The lateral compartment includes the peroneus longus and peroneus brevis, which assist in foot eversion and are innervated by the superficial peroneal nerve. The superficial posterior compartment includes the gastrocnemius, soleus, and plantaris, which assist in plantarflexion and are innervated by the tibial nerve. The deep posterior compartment is made up of the popliteus, flexor hallucis longus (FHL), flexor digitorum longus (FDL), and tibialis posterior, which mostly assist in plantarflexion and are innervated similarly by the tibial nerve. The primary motions of the ankle are dorsiflexion, plantarflexion, inversion and eversion. However, with the addition of midfoot motion (adduction, and abduction), the foot may supinate (inversion and adduction) or pronate (eversion and abduction). In order to accomplish these motions, muscles outside of the foot (extrinsic) and muscles within the foot (intrinsic) attach throughout the foot, crossing one or more joints. Laterally, the peroneus brevis and tertius attach on the proximal fifth metatarsal to evert the foot. The peroneus longus courses under the cuboid to attach on the plantar surface of the first metatarsal, acting as the primary plantarflexor of the first ray and, secondarily, the foot. Together, these muscles also assist in stabilizing the ankle for patients with deficient lateral ankle ligaments from chronic sprains. Medially, the posterior tibialis inserts on the plantar aspect of the navicular cuneiforms and metatarsal bases, acting primarily to invert the foot and secondarily to plantarflex the foot. The flexor hallucis longus inserts on the base of the distal phalanx of the great toe to plantarflex the great toe, and the flexor digitorum inserts on the bases of the distal phalanges of the lesser four toes, acting to plantarflex the toes. The gastrocnemius inserts on the calcaneus as the Achilles tendon and plantarflexes the foot. Anteriorly, the tibialis anterior inserts on the dorsal medial cuneiform and plantar aspect of the first metatarsal base as the primary ankle dorsiflexor and secondary inverter. The Extensor hallucis longus and extensor digitorum longus insert on the dorsal aspect of the base of the distal phalanges to dorsiflex the great toe and lesser toes, respectively. This model was created from the file STS_022.

    Free

×
×
  • Create New...