Jump to content

Search the Community

Showing results for tags 'knee joint'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Blogs

  • Embodi3d Test Blog
  • 3D Printing in Medicine
  • Cool Medical 3D-Printing
  • 3D Bio Printing by Paige Anne Carter
  • SSchoppert's Blog
  • Additive Manufacturing in Medicine
  • biomedical 3D printing
  • Bryce's Blog
  • Chris Leggett
  • 3D Models Help Improve Surgical Precision, Reduce Operating Time
  • Desktop 3D Printing in Medical Imaging
  • 3D Printing: Radiology corner
  • The Embodi3D.com Blog
  • descobar3d's Blog
  • 3D Printing in Anthropology
  • Learn to 3D Print: Basic Tools from software to printers
  • 3D printing for bio-medicine
  • 3D Biomedical Printing - by Jacob M.
  • Valchanov's Blog
  • Deirdre_Manion-Fischer's Blog
  • Matt Johnson's Biomedical 3D Printing Blog
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Mike at Medical Models
  • TOP TEN THE MOST DOWNLOADED EMBODI3D

Forums

  • Biomedical 3D Printing
    • Hardware and 3D Printers
    • democratiz3D®
    • Software
    • Clinical applications
    • 3D Printable Models
    • Medical Imaging: CT, MRI, US
    • Science and Research
    • News and Trending Topics
    • Education, Conferences, Meetings, Events
    • Member Lounge (new!)
    • General
  • Classifieds, Goods and Services
    • General Classifieds - members post free
    • Services needed
    • Services offered
    • Stuff for sale/needed
    • Post a Job
    • Looking for work - visible only to members

Categories

  • democratiz3D® Processing
  • Bones
    • Skull and Head
    • Dental, Orthodontic, Maxillofacial
    • Spine and Pelvis
    • Extremity, Upper (Arm)
    • Extremity, Lower (Leg)
    • Thorax and Ribs
    • Whole body
    • Skeletal tumors, fractures and bony pathology
  • Muscles
    • Head and neck muscles
    • Extremity, Lower (Leg) Muscles
    • Extremity, Upper (Arm) Muscles
    • Thorax and Ribs Muscles
    • Abdomen and Pelvis muscles
    • Whole body Muscles
    • Muscular tumors and sarcomas
  • Cardiac and Vascular
    • Heart
    • Congenital Heart Defects
    • Aorta
    • Mesenteric and abdominal arteries
    • Veins
  • Organs of the Body
    • Brain and nervous system
    • Kidneys
    • Lungs
    • Liver
    • Other organs
  • Skin
  • Veterinary
    • Dogs
    • Cats
    • Other
  • Science and Research
    • Paleontology
    • Anthropology
    • Misc Research
  • Miscellaneous
    • Formlabs
  • Medical CT Scan Files
    • Skull, Head, and Neck CTs
    • Dental, Orthodontic, Maxillofacial CTs
    • Thorax and Ribs CTs
    • Abdomen and Pelvis CTs
    • Extremity, Upper (Arm) CTs
    • Extremity, Lower (Leg) CTs
    • Spine CTs
    • Whole Body CTs
    • MRIs
    • Ultrasound
    • Veterinary/Animals
    • Other

Product Groups

  • Premium Services
  • Physical Print Quotes

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Found 12 results

  1. jeanineredman

    MRI Left Knee Injury

    Version 1.0.0

    26 downloads

    This is an MRI image of my father's knee after an injury. Vastus lateralis muscle, Biceps femoris muscle (long head), Vastus intermedius muscle, Biceps femoris muscle (short head), lateral patellar retinaculum (longitudinal), Superior lateral genicular artery and vein, Lateral patellar retinaculum (transverse), Gastrocnemius muscle (lateral head), Femur (lateral condyle), Common fibular (peroneal) nerve, Knee joint, Lateral meniscus (posterior horn), Lateral meniscus (anterior horn), Popliteus muscle (with tendon), Inferior lateral genicular artery, Tibiofibular joint (proximal), Lateral tibial condyle , Fibula (head), Anterior tibial artery, Soleus muscle, Tibialis posterior muscle, Peroneus (fibularis) longus muscle, Tibialis anterior muscle, mri, t1, without contrast, dicom

    Free

  2. Version 1.0.0

    96 downloads

    Left Knee Joint 3D Printable STL File Converted From CT Scan - stl file processed The knee joint is formed by three bones: the femur, the tibia and the patella. the knee joint is the largest synovial joint and provides the flexion and extension movements of the leg as well as relative medial and lateral rotations while in relative flexion. The knee joint articulations are two condylar joints between the femur and the tibia as well as a joint between the patella and the femur. Although the fibula is closely related to the knee joint but it doesn't share in articulation. The knee joint is also formed by some ligaments and cartilage called (menisci) which are best imaged by MRI. This 3D model was created from the file STS_045. The source CT scan used to create this model can be found here.

    Free

  3. Version 1.0.0

    10 downloads

    The knee joint is formed by three bones: the femur, the tibia and the patella. the knee joint is the largest synovial joint and provides the flexion and extension movements of the leg as well as relative medial and lateral rotations while in relative flexion. The knee joint articulations are two condylar joints between the femur and the tibia as well as a joint between the patella and the femur. Although the fibula is closely related to the knee joint but it doesn't share in articulation. The knee joint is also formed by some ligaments and cartilage called (mensci) which are best imaged by MRI. The CT scan is derived from the file STS_039 The 3D bone model created from this scan can be reviewed at: The 3D muscle model created from this scan can be reviewed at: The 3D skin model created from this scan can be reviewed at:

    Free

  4. Version 1.0.0

    0 downloads

    The knee joint is formed by three bones: the femur, the tibia and the patella. the knee joint is the largest synovial joint and provides the flexion and extension movements of the leg as well as relative medial and lateral rotations while in relative flexion. The knee joint articulations are two condylar joints between the femur and the tibia as well as a joint between the patella and the femur. Although the fibula is closely related to the knee joint but it doesn't share in articulation. The knee joint is also formed by some ligaments and cartilage called (mensci) which are best imaged by MRI. This 3D model was created from the file STS_039 The original CT examination can be reviewed at: The 3D bone model created from this scan can be reviewed at: The 3D muscle model created from this scan can be reviewed at:

    Free

  5. Version 1.0.0

    0 downloads

    The knee joint is formed by three bones: the femur, the tibia and the patella. the knee joint is the largest synovial joint and provides the flexion and extension movements of the leg as well as relative medial and lateral rotations while in relative flexion. The knee joint articulations are two condylar joints between the femur and the tibia as well as a joint between the patella and the femur. Although the fibula is closely related to the knee joint but it doesn't share in articulation. The knee joint is also formed by some ligaments and cartilage called (menisci) which are best imaged by MRI. This 3D model was created from the file STS_039 The original CT examination can be reviewed at: The 3D bone model created from this scan can be reviewed at: The 3D skin model created from this scan can be reviewed at:

    Free

  6. Version 1.0.0

    6 downloads

    The knee joint is formed by three bones: the femur, the tibia and the patella. the knee joint is the largest synovial joint and provides the flexion and extension movements of the leg as well as relative medial and lateral rotations while in relative flexion. The knee joint articulations are two condylar joints between the femur and the tibia as well as a joint between the patella and the femur. Although the fibula is closely related to the knee joint but it doesn't share in articulation. The knee joint is also formed by some ligaments and cartilage called (menisci) which are best imaged by MRI. This 3D model was created from the file STS_039 The original CT examination can be reviewed at: The 3D muscle model created from this scan can be reviewed at: The 3D skin model created from this scan can be reviewed at:

    Free

  7. Version 1.0.0

    30 downloads

    The knee joint is formed by three bones: the femur, the tibia and the patella. the knee joint is the largest synovial joint and provides the flexion and extension movements of the leg as well as relative medial and lateral rotations while in relative flexion. The knee joint articulations are two condylar joints between the femur and the tibia as well as a joint between the patella and the femur. Although the fibula is closely related to the knee joint but it doesn't share in articulation. The knee joint is also formed by some ligaments and cartilage called (mensci) which are best imaged by MRI. The CT scan is derived from the file STS_039 The 3D bone model created from this scan can be reviewed at: The 3D muscle model created from this scan can be reviewed at: The 3D skin model created from this scan can be reviewed at:

    Free

  8. Version 1.0.0

    4 downloads

    The knee joint is formed by three bones: the femur, the tibia and the patella. the knee joint is the largest synovial joint and provides the flexion and extension movements of the leg as well as relative medial and lateral rotations while in relative flexion. The knee joint articulations are two condylar joints between the femur and the tibia as well as a joint between the patella and the femur. Although the fibula is closely related to the knee joint but it doesn't share in articulation. The knee joint is also formed by some ligaments and cartilage called (mensci) which are best imaged by MRI. This 3D model was created from the file STS_039 The original CT examination can be reviewed at: The 3D bone model created from this scan can be reviewed at: The 3D muscle model created from this scan can be reviewed at:

    Free

  9. Version 1.0.0

    2 downloads

    The knee joint is formed by three bones: the femur, the tibia and the patella. the knee joint is the largest synovial joint and provides the flexion and extension movements of the leg as well as relative medial and lateral rotations while in relative flexion. The knee joint articulations are two condylar joints between the femur and the tibia as well as a joint between the patella and the femur. Although the fibula is closely related to the knee joint but it doesn't share in articulation. The knee joint is also formed by some ligaments and cartilage called (mensci) which are best imaged by MRI. This 3D model was created from the file STS_039 The original CT examination can be reviewed at: The 3D bone model created from this scan can be reviewed at: The 3D skin model created from this scan can be reviewed at:

    Free

  10. Version 1.0.0

    18 downloads

    The knee joint is formed by three bones: the femur, the tibia and the patella. the knee joint is the largest synovial joint and provides the flexion and extension movements of the leg as well as relative medial and lateral rotations while in relative flexion. The knee joint articulations are two condylar joints between the femur and the tibia as well as a joint between the patella and the femur. Although the fibula is closely related to the knee joint but it doesn't share in articulation. The knee joint is also formed by some ligaments and cartilage called (mensci) which are best imaged by MRI. This 3D model was created from the file STS_039 The original CT examination can be reviewed at: The 3D muscle model created from this scan can be reviewed at: The 3D skin model created from this scan can be reviewed at:

    Free

  11. Version 1.0.0

    46 downloads

    The knee joint is formed by three bones: the femur, the tibia and the patella. the knee joint is the largest synovial joint and provides the flexion and extension movements of the leg as well as relative medial and lateral rotations while in relative flexion. The knee joint articulations are two condylar joints between the femur and the tibia as well as a joint between the patella and the femur. Although the fibula is closely related to the knee joint but it doesn't share in articulation. The knee joint is also formed by some ligaments and cartilage called (menisci) which are best imaged by MRI. This 3D model was created from the file STS_045. The source scan be be found here.

    Free

  12. Version 1.0.0

    4 downloads

    This is the normal left knee muscle model of a 56 year old male with right anterior thigh pleomorphic leiomyosarcoma. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The knee is composed of 3 separate joints: two hinge joints (medial and lateral femorotibial joints), and one sellar, or gliding, joint (the patellofemoral joint). These also compose the three compartments of the knee: medial, lateral, and patellofemoral. Although the knee is thought of as a hinge joint, it actually has 6 degrees of motion: extension/flexion, internal/external rotation, varus/valgus, anterior/posterior translation, medial/lateral translation, and compression/distraction. In order to provide stability to this inherently unstable knee, static and dynamic stabilizers surround the knee, including muscles and ligaments. On the medial aspect of the knee, the static stabilizers consist of the superficial and deep medial collateral ligaments (MCL) and the posterior oblique ligament (POL). The dynamic stabilizers are the semimembranosus, vastus medialis, medial gastrocnemius, and pes tendons (semitendinosus, gracilis, and sartorius). The lateral stabilizers are best known as the posterolateral corner, and consist of the static stabilizers (lateral collateral ligament (LCL), iliotibial band (ITB), arcuate ligament), and dynamic stabilizers (popliteus, biceps femoris, lateral gastrocnemius). Inside the joint, the anterior cruciate ligament provides resistance to anterior tibial translation varus, and internal rotation, whereas the posterior cruciate ligament provides resistance to posterior tibial translation, varus, valgus, and external rotation. This model was created from the file STS_014.

    Free

×