Search the Community

Showing results for tags 'fda'.

More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


  • Embodi3d Test Blog
  • 3D Printing in Medicine
  • Cool Medical 3D-Printing
  • 3D Bio Printing by Paige Anne Carter
  • SSchoppert's Blog
  • Additive Manufacturing in Medicine
  • biomedical 3D printing
  • Bryce's Blog
  • Chris Leggett
  • 3D Models Help Improve Surgical Precision, Reduce Operating Time
  • Desktop 3D Printing in Medical Imaging
  • 3D Printing: Radiology corner
  • The Blog
  • descobar3d's Blog
  • 3D Printing in Anthropology
  • Learn to 3D Print: Basic Tools from software to printers
  • 3D printing for bio-medicine
  • 3D Biomedical Printing - by Jacob M.
  • Valchanov's Blog
  • Deirdre_Manion-Fischer's Blog
  • Matt Johnson's Biomedical 3D Printing Blog
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Mike at Medical Models


  • Biomedical 3D Printing
    • Questions and Answers (new!)
    • Hardware and Printers
    • Software
    • Clinical applications
    • 3D Printable Models
    • Medical Imaging: CT, MRI, US
    • Science and Research
    • News and Trending Topics
    • Education, Conferences, Meetings, Events
    • Member Lounge (new!)
    • General
  • Classifieds, Goods and Services
    • General Classifieds - members post free
    • Services needed
    • Services offered
    • Stuff for sale/needed
    • Post a Job
    • Looking for work - visible only to members


  • democratiz3D® Processing
  • Bones
    • Skull and Head
    • Dental, Orthodontic, Maxillofacial
    • Spine and Pelvis
    • Extremity, Upper (Arm)
    • Extremity, Lower (Leg)
    • Thorax and Ribs
    • Whole body
    • Skeletal tumors, fractures and bony pathology
  • Muscles
    • Head and neck muscles
    • Extremity, Lower (Leg) Muscles
    • Extremity, Upper (Arm) Muscles
    • Thorax and Ribs Muscles
    • Abdomen and Pelvis muscles
    • Whole body Muscles
    • Muscular tumors and sarcomas
  • Cardiac and Vascular
    • Heart
    • Congenital Heart Defects
    • Aorta
    • Mesenteric and abdominal arteries
    • Veins
  • Organs of the Body
    • Brain and nervous system
    • Kidneys
    • Lungs
    • Liver
    • Other organs
  • Skin
  • Veterinary
    • Dogs
    • Cats
    • Other
  • Science and Research
    • Paleontology
    • Anthropology
    • Misc Research
  • Miscellaneous
    • Formlabs
  • Medical CT Scan Files
    • Skull, Head, and Neck CTs
    • Dental, Orthodontic, Maxillofacial CTs
    • Thorax and Ribs CTs
    • Abdomen and Pelvis CTs
    • Extremity, Upper (Arm) CTs
    • Extremity, Lower (Leg) CTs
    • Spine CTs
    • Whole Body CTs
    • MRIs
    • Ultrasound
    • Veterinary/Animals
    • Other

Found 7 results

  1. Hello, I'm hoping to find some answers to questions regarding the legalities of selling 3D rendering/printing services for local clinics. I have worked in Radiology as an X-Ray tech for 13 years as well as for my local Diagnostic Imaging Program as an adjunct instructor for 7 years. I am currently assessing the market for 3D modeling/printing services to clinics and hospitals. I have read the information from the FDA including the slides you have posted. If you don't mind I was hoping to ask you if you know of any clarification regarding the following: If a 3rd party company were selling 3D rendering/printing services of patient specific anatomy using imaging studies (CT,MRI) stated that the models were "not for diagnostic use" would that still require said 3rd party company to use FDA approved software to do so? If the models were used for diagnostic use would that fall under the liability of the MD or the 3rd party company or both?
  2. Hello everybody it's Dr. Mike here again with another medical 3D printing tutorial. In this tutorial we are going to be going over freeware and open-source software options for medical 3D printing. This tutorial is based on a workshop I am giving at the 2017 Radiological Society of North America (RSNA) Annual Meeting in Chicago Illinois, November 2017. In this tutorial we will be going over desktop software that can be used to create 3D printable anatomic models from medical scans, as well as a free online automated conversion service. At the end of this tutorial you should be able to make high-quality 3D printable models from a medical imaging scan using free software or services. Do I need to use FDA-approved software for Medical 3D Printing? Before I dive into the tutorial I'd like to take a minute to talk to learners from the United States about the US Food and Drug Administration (FDA) and how this federal agency impacts medical 3D printing. Many healthcare professionals are confused and concerned about the ability to use non-FDA-approved software for medical 3D printing. Software vendors sell software that has been FDA-approved, but the software is usually quite expensive, to the tune of many thousands of dollars per year in license fees. There has been a lot of confusion about whether non-FDA-approved free software can be used for medical applications. In August 2017 a meeting was held at the main FDA campus between FDA staff and representatives from RSNA. During this meeting the FDA clarified its stance on the issue (Figure 1). Basically the FDA indicated that if a doctor needs a 3D printed model for patient care, the doctor does NOT need to use FDA-approved software, as this is a medical decision and the FDA does not regulate the practice of medicine. FDA-approved software is not required even if the doctor is using the model for diagnostic use (Figure 2). If a company or other organization is marketing or designing software for diagnostic use, then that company or organization is required to seek FDA approval for that product. Basically if you are a physician or working on behalf of the physician and require a model, FDA-approved software is not required as long as you are not running a commercial service or company. Despite this leeway granted by the FDA's interpretation, I encourage anyone considering using freeware to create models for diagnostic use to use common sense and double check your findings before making any critical decision that could impact patient care. I also encourage you to look at the slides from the FDA presentation directly at the link below. Of course, none of this applies if you are not creating models for medical use. Figure 1: Title slide from the FDA presentation Figure 2: The relevant slide from the FDA presentation. Doctors creating 3D printable models for clinical and diagnostic use do not need to use FDA-approved software as this is considered practice of medicine, which the FDA does not regulate. Medical 3D Printing Overview In this tutorial we're going to go over two different ways to use free and open-source software to convert a medical imaging scan to a 3D printable model. This can be done using free desktop software or a free online service. The desktop software requires more steps and more of a learning curve, but also allows more control for customized models. The online service is fast, easy, and automated. However, if you want to design customized elements into your model, you'll not be able to. The overall workflow of the session is shown in Figure 3. Figure 3: Workflow overview Part 1: Free online service – Step 1: Download the scan Please download the scan for this tutorial from the website at the link below. You have to have a free account in order to download. If you don't have an account go ahead and register by clicking on the "Sign Up" button on the upper right-hand portion of the page. Registration is easy and only takes about one minute. You will have to confirm your email address before your account is active, so make sure you have access to your email. Step 2: Inspect the scan If you don't already have it, download and install the desktop software program 3D Slicer from ( Slicer is a free medical image viewing and research software application. We are going to use Slicer to view our scan. Once Slicer is installed, open the application. Drag-and-drop the file "CTA Head.nrrd" onto the Slicer window. Slicer will ask if you want to add the file, click OK. The scan should now show in Figure 4. If your window doesn't look this then select the Four Up layout from the Layouts drop-down menu. Figure 4: The 4 panel view and Slicer You can navigate and manipulate the images with Slicer using the various mouse buttons. Your left mouse button to adjust the window/level settings as shown in Figure 5. Figure 5: Use the left mouse button to adjust window/level. The right mouse button allows you to zoom into a specific panel, as shown in Figure 6. Figure 6: The right mouse button controls zoom. The scroll wheel allows you to move through the various slices of the scan, as shown in Figure 7. Figure 7: The mouse wheel controls scrolling Step 3: Upload the scan to Now that we have an idea about what's in the scan, you can upload it to for automatic processing into a 3D printable model. Go to If you don't yet have a free user account, you will need one now. Go ahead and register. The process only takes a minute. Under the democratiz3D menu, click Launch App, as shown in Figure 8. Figure 8: Launching the democratiz3D medical scan to 3D printable model automated conversion service. Drag and drop the file "CTA Head.nrrd" onto the upload panel, as shown in Figure 9. The NRRD file format is an anonymized file format so this transfer is HIPAA compliant. If you want to know more about how to create an NRRD file from a DICOM data set, please see my tutorial on the topic here. Figure 9: Drag-and-drop the scan file "CTA Head.nrrd" onto the highlighted upload panel A submission form will open up. The first part of the form will ask you questions about the source file you're uploading. The second part will ask about the new model being generated. Start with the first part of the form, as shown in Figure 10, and fill in information about your uploaded scan file, including a filename, short description, any tags you wish to use to help people identify your file, whether you wish to share the file with the community or keep it private, and whether you want to make the file free for download or for sale. Obviously if you keep the file private this last setting doesn't matter as nobody will be able to see the file except you. Figure 10: The first part of the form relates to information about your uploaded scan file. Make sure you fill in at least the required elements. In the second part of the form fill in information about your model file that will be generated, as shown in Figure 11. First of all, make sure democratized processing is turned on. The slider should be green in color, as shown in Figure 11. This is very important because if processing is turned off, you will not generate an output model file! Specify what operation you would like to perform on the scan, and whether you would like to generate a bone, muscle, or skin model. Also, specify the desired quality of the output model (low, medium, high, etc.) and whether you want the output model to be shared with the community (recommended) or private. If your file is going to be shared, choose a Creative Commons license that people can use it under. When you're satisfied with your parameters, click the Submit button. Figure 11: The second part of the form relates to information about your 3D printable model to be generated. Choose an operation, quality level, as well as privacy settings. Step 4: Download your finished 3D printable model. After anywhere between 5 to 20 minutes you should receive an email saying that your model processing is complete. The exact time depends on a variety of factors including the complexity of your model, the quality that you've chosen, as well as server load. Once you receive the email follow the link to the model download page. Alternatively you can find the model by clicking on your username at the upper right-hand corner of any webpage and selecting My Files. Once you find your model page you can inspect the thumbnails to make sure the model meets your criteria, as shown in Figure 12. When you are ready click the download button, agree to the terms, and your model STL file will download to your computer. Figure 12: Download your file after processing is complete. That's it! Your 3D printable model is ready to send to a printer. The process takes about 2 to 3 minutes to enter the data, plus 5 to 15 minutes to wait for the processing to be done. The service is batchable, so it is possible for you to upload multiple files simultaneously. The service will crank out models as fast as you can upload them. Part 2: Free desktop software – 3D Slicer and Meshmixer You can use the free software program 3D slicer and Meshmixer to generate 3D printable models. The benefit of using desktop software is that you have more control over the appearance of the model and which structures you want included and excluded. The downside of using desktop software is that software is complicated and somewhat time-consuming to learn. If you haven't already download 3D Slicer and Meshmixer from the links below. Be sure to choose the appropriate operating system for your computer. Step 1: Download the tutorial scan file and load into Slicer as described above in Part 1 Steps 1 and 2. Step 2: Create a surface model from the scan data. From within Slicer, open the Grayscale Model Maker module. In the Modules menu at the top now bar, select All Modules and choose the Grayscale Model Maker item, as shown in Figure 13. Figure 13: Selecting the Grayscale Model Maker module. You will now be taken to the Grayscale Model Maker module, which will convert the volumetric data in the CT scan to a surface model that can be used to create a STL file for 3D printing. In the parameters panel on the left side of the screen, make sure that the parameter set value is set to "Grayscale Model Maker", and the Input Volume is set to "CTA Head." Under Output Geometry, choose Create a New Model, since we wish to create a new output model. These parameters are shown in Figure 14. Figure 14: Input parameters for the Grayscale Model Maker module Set the Threshold value to 150 Hounsfield units. Also, set the Decimate value to 0.8 and make sure the Split Normals checkbox is unchecked. These are shown in Figure 15. When you're happy with your parameters, check Apply, and the grayscale model maker will work for a minute or so to create your surface model. Figure 15: Additional input parameters for the Grayscale Model Maker module Step 3: Save the surface model to an STL file. Now that you have generated a surface model, you are ready to export it to an STL file. Click on the Save button on the upper left-hand corner of the 3D Slicer window. A Save dialog box will pop up, as shown in Figure 16. Find the row that contains the item "Output Geometry.vtk." Make sure that the checkbox next to this item is checked. All other rows should be unchecked. In the File Format column, make sure that the file shows as STL. Finally, make sure that the directory specified in the third column is the one you wish to save the file to. When everything is correct go ahead and click Save. Your surface model will now be exported and STL file saved in the directory specified. Figure 16: The Save dialog box Step 4: Repair the model in Meshmixer The model is in STL format, but it has multiple errors in it which need to be corrected prior to 3D printing. We will do this in the freeware software program Meshmixer. Open Meshmixer, and drag-and-drop the just-created STL file "Output Geometry.stl" onto the Meshmixer window. The model will now open in Meshmixer. You will notice that the model is quite large, having about 300,000 polygons, as shown in Figure 17. Figure 17: Open the model in Meshmixer Navigating in Meshmixer is quite intuitive. The left mouse button uses tools and selects structures. The right mouse button is used to rotate the model. The scroll wheel is used to zoom in and out, as shown in Figure 18. Figure 18: Navigating in Meshmixer Run an initial repair on the model using the Inspector tool We will be able to get rid of most (but not all) errors using the automated Inspector tool. Click on the Analysis button on the left navigation pane and choose the Inspector tool. Inspector will run and highlight all of the problems with the model, as shown in Figure 19. As you can see there are many hundreds of errors. Click on the Auto Repair All button to automatically attempt to fix these. At least one error will remain after the end of the process, but don't worry we will fix that later. Click on the Done button. Figure 19: The Inspector tool shows errors in the mesh Remesh the model The Remesh operation recalculates all the polygons in the model, adjusting their size, and giving the model in more natural and less faceted look. Remesh and can also help to fix lingering mesh errors. First, select all the polygons in the model by hitting control-A. The entire model should turn orange, as shown in Figure 20. Figure 20: Selecting all the polygons in the model. Next, run the Remesh operation. Hit the R key, or choose Select-> Edit-> Remesh. The Remesh operation will now run, and will take approximately 1.5 to 2 minutes, depending on the power of your computer. This is shown in Figure 21. Figure 21: The Remesh operation. At the end of the Remesh operation, your model should have a much smoother and more natural appearance. You can adjust some of the Remesh parameters in the visualized pane, and the operation will recalculate. When you're happy with the result, click on the Accept button. This is shown in Figure 22. Figure 22: The model after the Remesh operation. Repeat the Inspector tool operation Now that we have re-mashed the model, we can rerun the Inspector tool to clean up any residual errors. Click on Analysis and then the Inspector menu item. Click Auto Repair All, and inspector should repair any problems that still remain. When you're finished, click the Done button, as shown in Figure 23. Figure 23: Running the Inspector tool a second time Expose the cerebral vessels. We are now going to take an extra step and make a cut through the crowd of the skull to expose the cerebral vessels. This can be easily achieved in about one minute. First, make sure to select all the vertices in the model by hitting control-A or using the menus Select-> Modify-> Select all, as shown in Figure 24. The entire model should turn orange to indicate that it is selected. Figure 24: Selecting all the polygons in the model prior to performing a cut. Next, start a plane cut by choosing Select-> Edit-> Plane cut. The plane cut will show on the screen. The portion of the model that is transparent will be cut off. The portion of the model that is opaque will be left behind. Move the plane by using the purple and green arrow handles. Rotate the plane by using the red arc handle, as shown in Figure 25. Figure 25: Move and rotate the plane cut using the arrow and arc handles. In this case we wish to move the plane cut to the four head, and rotated 180° so that the transparent portion of the cut is at the top of the head, and the opaque portion encompasses the face, jaw, and lower part of the skull. After you have finished positioning the plane, your model should look similar to Figure 26. When you're happy with position, click Accept. Figure 26: The best position of the plane cut tool The crown of the skull will now be cut off, exposing the cerebral vessels within the brain. This includes the anterior, posterior, and middle cerebral arteries as well as the venous structures such as the straight sinus and sigmoid sinuses, as shown in Figure 27. As you can see, this is a highly detailed model and excellent for educational purposes and teaching neurovascular anatomy. Figure 27: The final model Conclusion In this tutorial we learn how to create a 3D printable skull and vascular model utilizing the free online service from, as well as free desktop software 3D Slicer and Meshmixer. Both methods have their advantages and disadvantages. has a very fast and easy to use service. The desktop software is more difficult to use and learn, but gives more flexibility in terms of customization. Alternatively, you can use a combination of the two techniques, for example generating your model on the website and then performing custom modifications, such as the plane cut we did in this tutorial, utilizing Meshmixer. I hope you found this tutorial helpful and entertaining. Please give the tutorial a like. If you are engaged in medical 3D printing, please consider sharing your work on the website. Thank you very much and happy 3D printing!
  3. There is an RSNA 3D printing Special Interest Group (SIG) meeting this August 31, 2017 in Washington DC at the FDA. This is an important meeting since we want to make sure that 3D printing remains open to everybody and the FDA doesn't required expensive, proprietary and FDA-approved software for medical 3D printing. If you want to know more about the SIG, here is the page. Non-physicians can join.
  4. 3D printing technologies have opened up the capabilities for customization in a wide variety of applications in the medical field. Using bio-compatible and drug-contact materials, medical devices can be produced that are perfectly suited for a particular individual. Another trend enabled by 3D printing is mass customization, in that multiple individualized items can be produced simultaneously, saving time and energy while improving manufacturing efficiency. 3D printers are used to manufacture a variety of medical devices, including those with complex geometry or features that match a patient’s unique anatomy. Some devices are printed from a standard design to make multiple identical copies of the same device. Other devices, called patient-matched or patient-specific devices, are created from a specific patient’s imaging data. Commercially available 3D printed medical devices include: Instrumentation (e.g., guides to assist with proper surgical placement of a device) Implants (e.g., cranial plates or hip joints) External prostheses (e.g., hands) Prescription Glasses Hearing Aids In summary, the 3D Printing medical device market looks exciting and promising, Various Reports and surveys suggest the unexpected growth and demand for 3D Printing in medical device industry and it is expected to blossom more but a number of existing application areas for 3D printing in healthcare sector require specialized materials that meet rigid and stringent bio-compatibility standards, Future 3D printing applications for the medical device field will certainly emerge with the development of suitable additional materials for diagnostic and therapeutic use that meet CE and FDA guidelines.
  5. Interesting guidance from the FDA. It will cover 3d printing custom devices.
  6. Three-dimensional (3D) printing technology was invented in the 1980s to create mechanical prototypes for the manufacturing sector. Healthcare professionals and researchers soon realized the potential of this novel technology in the field of medicine and began depositing desired materials on specific substrates to create anatomical models, surgical instruments, prosthetics and even body parts that could be customized to meet the needs of the user. Scientists rely on MRI and CT scan images of the patients to obtain the exact dimensions for the target object, feed the image data into one or more software programs, and let the 3D printer do its job. Millions of dollars have been spent on 3D medical printing and bioprinting research in last decade, and such endeavors have led to the creation of several innovative solutions. Nonetheless, many of these products can't benefit the patients until they come with the Food and Drug Administration’s (FDA) seal of approval. Recently, the federal agency woke up to the needs of the 3D medical printing industry and issued guidance for 3D printed medical devices based on design, manufacturing and device testing information. Many 3D printed products have received FDA approval, some of which are highlighted below. The O2 Vent a 3D Printed Solution for Sleep Apnea In April, 2016, Oventus, an Australian startup, received FDA approval for its titanium mouth device called the O2 Vent. The customizable oral device contains airways that reach the back of the patient’s mouth bypassing obstructions caused by nose, soft palate or tongue. The 3D printed device is expected to benefit over 37 million Americans suffering from sleep apnea while helping Oventus enter the $50 billion global sleep disorder market. Spritam, the FDA approved 3D Printed Drug In another bold step, the FDA approved a 3D printed drug, Spritam, to treat partial onset seizures, myoclonic seizures and primary generalized tonic-clonic seizures. Its manufacturer, Aprecia Pharmaceuticals, used the ZipDose 3D printing technology to create a pill that disintegrates in the mouth with very little water and is especially beneficial to patients who cannot swallow their medication during seizures. The high-dose drug can impact over 2.4 million American adults with epilepsy, as per an article published in the March, 2016, edition of Forbes. Lateral Spine Truss System Another innovative product, the Lateral Spine Truss System, also received a go-ahead from the federal agency in 2016. It consists of 3D printed orthopedic implants, manufactured by 4WEB Medical, that allow for integrated instrumentation and customization. They come in sterile packs and can be used with most mainstream spinal surgery techniques. The goal is to deliver functional implants with a structural design. CASCADIA Cervical and CASCADIA AN Lordotic Oblique Interbody Systems The FDA has also issued a 510 (K) clearance to K2M for CASCADIA Cervical and CASCADIA AN Lordotic Oblique Interbody Systems with Lamellar 3D Titanium technology. While CASCADIA Cervical Interbody System is an intervertebral body fusion device, the CASCADIA AN Lordotic Oblique Interbody System has been designed for transforaminal-lumbar interventions. K2M expects its product to help the approximately 800,000 men and women who undergo cervical fusion each year. 3D Printed Cranial Implants Brazilian and U.S. based BioArchitects collaborated with Swedish 3D printing company ArcamAB to generate patient-specific cranial implants. The company used Electron Beam Melting technology and lightweight titanium alloys to form the implants. Although the FDA approval is restricted to the non-loadbearing bones of the skull and face, healthcare professionals are hopeful that the technology can treat a variety of conditions ranging from trauma to congenital abnormalities. While 3D printed products with FDA approvals strive to become more accessible to all patients, others are waiting in the pipeline for a green light from the agency. Licensing requirements include extensive lab testing and clinical evaluation. Doctors and scientists are, however, confident the products will meet the criteria and get the necessary endorsements from the FDA to eventually help transform medicine. Sources:
  7. The US Food and Drug Administration (FDA) just released guidance on the use of 3D printing for medical purposes in the USA. I am particularly interested in how the FDA approval applies to software used to generate models that are used for surgical planning but not diagnostic purposes? It seems, from the article, that if the purpose of the 3D printed model is merely for thinking about or planning a surgery, it is a "visual aid" and FDA approved software is not required. The technical term is a "medical image hardcopy device," examples of which are laser printers and cameras. If it is used for diagnosis, then it should be discussed with the FDA. And if use for implantable medical devices or surgical cutting guides (i.e. stuff that touches the patient), then the whole process is under FDA approval. This correlates to what the paper's first author (Matthew Di Prima from FDA) said at the 2015 Bioinformatics Festival during this talk. Key part is at 4:41. Anyone have any thoughts about this?