Jump to content

Search the Community

Showing results for tags 'ct'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Blogs

  • Embodi3d Test Blog
  • 3D Printing in Medicine
  • Cool Medical 3D-Printing
  • 3D Bio Printing by Paige Anne Carter
  • SSchoppert's Blog
  • Additive Manufacturing in Medicine
  • biomedical 3D printing
  • Bryce's Blog
  • Chris Leggett
  • 3D Models Help Improve Surgical Precision, Reduce Operating Time
  • Desktop 3D Printing in Medical Imaging
  • 3D Printing: Radiology corner
  • The Embodi3D.com Blog
  • descobar3d's Blog
  • 3D Printing in Anthropology
  • Learn to 3D Print: Basic Tools from software to printers
  • 3D printing for bio-medicine
  • 3D Biomedical Printing - by Jacob M.
  • Valchanov's Blog
  • Deirdre_Manion-Fischer's Blog
  • Matt Johnson's Biomedical 3D Printing Blog
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Mike at Medical Models
  • Best embodi3d.com Medical and Anatomic Files

Forums

  • Biomedical 3D Printing
    • Hardware and 3D Printers
    • democratiz3D®
    • Software
    • Clinical applications
    • 3D Printable Models
    • Medical Imaging: CT, MRI, US
    • Science and Research
    • News and Trending Topics
    • Education, Conferences, Meetings, Events
  • General
    • Announcements
    • Questions and Answers
    • Suggestions and Feedback
    • Member Lounge (members only)
  • Classifieds, Goods and Services
    • General Classifieds - members post free
    • Services needed
    • Services offered
    • Stuff for sale/needed
    • Post a Job
    • Looking for work - visible only to members

Categories

  • democratiz3D® Processing
  • Bones
    • Skull and Head
    • Dental, Orthodontic, Maxillofacial
    • Spine and Pelvis
    • Extremity, Upper (Arm)
    • Extremity, Lower (Leg)
    • Thorax and Ribs
    • Whole body
    • Skeletal tumors, fractures and bony pathology
  • Muscles
    • Head and neck muscles
    • Extremity, Lower (Leg) Muscles
    • Extremity, Upper (Arm) Muscles
    • Thorax and Ribs Muscles
    • Abdomen and Pelvis muscles
    • Whole body Muscles
    • Muscular tumors and sarcomas
  • Cardiac and Vascular
    • Heart
    • Congenital Heart Defects
    • Aorta
    • Mesenteric and abdominal arteries
    • Veins
  • Organs of the Body
    • Brain and nervous system
    • Kidneys
    • Lungs
    • Liver
    • Other organs
  • Skin
  • Veterinary
    • Dogs
    • Cats
    • Other
  • Science and Research
    • Paleontology
    • Anthropology
    • Misc Research
  • Miscellaneous
    • Formlabs
    • Anatomical Art
  • Medical CT Scan Files
    • Skull, Head, and Neck CTs
    • Dental, Orthodontic, Maxillofacial CTs
    • Thorax and Ribs CTs
    • Abdomen and Pelvis CTs
    • Extremity, Upper (Arm) CTs
    • Extremity, Lower (Leg) CTs
    • Spine CTs
    • Whole Body CTs
    • MRIs
    • Ultrasound
    • Veterinary/Animals
    • Other

Product Groups

  • Premium Services
  • Physical Print Quotes

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Name


Secondary Email Address


Interests

Found 1,543 results

  1. Muhsin

    test file

    Version 1.0.0

    2 downloads

    hi, stomach, .stl, 3d, model, printable, axial, dicom, liver, spleen, lung, lumbar, spine, ribs, thorax, pancreas, kidney, colon, transverse, descendent, ascendent, cervical, trachea, scapula, clavicle, humerus, head, diaphysis, bone, upper, limb, atlas, abdomen, ct, scan, without, contrast, esophagus,

    Free

  2. 3D-Printable Files of the Sinus Anatomy and Skull With hay fever season rapidly approaching in the northern hemisphere, embodi3D® is tackling the topic of the paranasal sinuses and portions of the upper skull. It's an autumnal celebration — embodi3D® style. Granted, we take on a number of arguably more interesting topics in our posts, and nasal and sinus anatomy should be fairly straightforward, right? After all, aren't these just openings and passageways in the skull that allow us to take in fresh air and exhale carbon dioxide? Not quite. This is human anatomy we're talking about, so nothing is ever as simple as one would assume, and the paranasal sinuses are certainly not an exception to this rule. The paranasal sinuses have six primary parts, including the frontal sinus, ethmoid sinus, nasal cavity, maxillary sinus, and mucus membrane. These features allow us to efficiently take in air from the environment. But, as outlined in in a study titled CT of Anatomic Variants of the Paranasal Sinuses and Nasal Cavity: Poor Correlation With Radiologically Significant Rhinosinusitis but Importance in Surgical Planning, there are certain conditions that complicate breathing and prevent the paranasal sinuses from operating efficiently. These include Agger nasi cells, nasal septal deviation (deviated septum), and a condition in which the sphenoid sinuses extend into the posterior nasal septum. As these conditions can have chronic and significant impacts on a patient's quality of life, it's no wonder that paranasal sinus CT scans are among the most-request scans ordered by ENT outpatient departments. The study's authors were unable to find a difference that was statistically different among variations of patients with nasal cavity disease of paranasal sinus disease. This means that all those CT scans being ordered for cases of rhinitis or sinusitis are lacking in value unless a surgery is being planned. Some incredible files of a CT scan following superior maxillary surgery have been uploaded in the past. Could 3D-printed models using CT scans converted in STL files provide better results than CT scans alone? We'll let you decide. But, we're certain you'll form an opinion after viewing these excellent uploads to embodi3D®. Don't forget: to get the most out of these files and to create your own 3D-printed models. Register with embodi3D® today! It's free and takes just a few short minutes of your time. #1. A Half-Skull Available for Download in STL Format An incredible 3D model of an half skull in half size uploaded by Dr. Mike. The paranasal sinuses (“the sinuses”) are air-filled cavities located within the bones of the face and around the nasal cavity and eyes. Each sinus is named for the bone in which it is located. This example it´s perfect for teaching and as a discussion piece. #2. Anatomy of the Paranasal Sinuses This excellent 3D model uploaded by valchanov shows: Maxillary sinus- one sinus located within the bone of each cheek. Ethmoid sinus- located under the bone of the inside corner of each eye, although this is often shown as a single sinus in diagrams, this is really a honeycomb-like structure of 6-12 small sinuses that is better appreciated on CT scan images through the face. Frontal- one sinus per side, located within the bone of the forehead above the level of the eyes and nasal bridge. Sphenoid- one sinus per side, located behind the ethmoid sinuses; the sphenoid is not seen in a head-on view but is better appreciated looking at a side view. #3. An Anatomically Precise 3D-Printed Nasal Cavity with Paranasal Sinuses The pink-hued membranes lining the sinuses make mucus that is cleared out of the sinus cavities and drains into the nasal passage. The right and left nasal passages are separated in the middle by a vertical plate of cartilage and bone called the nasal septum. The sidewall of each nasal passage is lined by three ridges of tissue, and each of these is called a turbinate or concha. Specifically they are designated as inferior, middle, or superior depending on whether one is referring to the lower, middle, or upper structure. Most of the sinuses drain from underneath the middle turbinate, into a region called the osteomeatal complex. When air flows through the nasal passage on each side, it streams through the crevices between the nasal septum and these turbinates. Both airflow and mucus ends up in a part of the throat called the nasopharynx (the very back of the nose, where it meets the rest of the mouth and throat). Air is then breathed into the windpipe and lungs, while the mucus is swallowed. #4. A CT Scan of Paranasal Sinuses Converted from a CT Scan DICOM Other interesting structures associated with the nasal and sinus tract: - Tear duct (called the nasolacrimal duct): drains tears from the inside corner of the eye into the nasal cavity. - Eustachian tube: this is the tube responsible for clearing air pressure in the ears; it opens into the back of the sidewall of the nasopharynx. - Adenoids: this is a collection of tonsil-like tissue that is found at the top of the nasopharynx beyond the very back of the nasal cavity. Although it can be large in children, this tissue usually goes away during puberty, although sometimes it does not and is then, at times, surgically removed for various reasons. #5. CT Scan of Chronic Sinusitis In this CT scan we can see maxillary sinuses with sclerotic thickened bone (hyperostosis) involving the sinus wall. Chronic sinusitis is one of the more prevalent chronic illnesses in the United States, affecting persons of all age groups. It is an inflammatory process that involves the paranasal sinuses and persists for 12 weeks or longer. The literature has supported that chronic sinusitis is almost always accompanied by concurrent nasal airway inflammation and is often preceded by rhinitis symptoms; thus, the term chronic rhinosinusitis (CRS) has evolved to more accurately describe this condition. Diagnostic Considerations - Problems to be considered include the following: - Temporomandibular joint syndrome - Asthma - Other chronic rhinitis - Nasal and sinus cavity tumors - Facial pain and headache attributable to other causes - Nasal polyp - Dental infection - Periodontal abscess - Antral-choanal polyp - Inverting papilloma - Aspirin/nonsteroidal anti-inflammatory drug sensitivity - Chronic headache of other etiology #6. A CT Scan of the Paranasal Sinuses In the article mentioned above the most common anatomic variant of the sinonasal cavities was deviation of the nasal septum, which was present in 98.4% of the patients but was considered to be more than minimal in 61.4%. The second most common variant was Agger nasi cells, which were present in 83.3% of patients, falling within the wide range of 3–100% reported in previous studies . Agger nasi cells were also the second most common variant that occurred bilaterally in our study. The third most common variant was extension of the sphenoid sinuses into the posterior nasal septum resulting in some degree of pneumatization of the posterior nasal septum (76.0%). The fourth most common variant was sphenoid sinus pneumatization extending posterior to the floor of the sella turcica (68.8%), which was defined as air extending more than halfway beyond the middle of the sellar floor toward the dorsum sella. The prevalence of pneumatization of the anterior clinoid process in our study was 16.7%, which is commensurate with the prevalence of 4–29.3% described in the literature . The prevalences of concha bullosa at 26.0% in our study (14–67.5% previously reported), pneumatized lamina of the middle turbinate at 37.0% (9.6–46.2% previously reported) #7. An Excellent 3D Model of the Skull in a Sagittal View Identification of some anatomic variants is crucial in the planning of functional endoscopic sinus or other skull base surgery, because the presence of these variants may influence the surgical approach. Most notably, the presence of sphenoethmoidal (Onodi) cells is associated with increased risk of injury to the optic nerves or carotid arteries during functional endoscopic sinus surgery and with other transsphenoidal and skull base procedures. Endoscopic sinus surgery (ESS) is one of the most common procedures done by otolaryngologists, so achieving a certain competency level in performing this procedure is crucial during the residency program. Moreover, ESS is considered a challenging procedure, especially surgery in the frontal sinus and the frontal recess, which remains the most challenging region of sinus surgery due to the variability and very complex nature of the cellular patterns. To overcome these challenges, simulation technology has emerged as a reasonable approach. A 3D-printed simulator currently developed in a work titled Development and validation of a 3D-printed model of the ostiomeatal complex and frontal sinus for endoscopic sinus surgery training proved to have realistic haptic feedback, especially for the bony dissection. As for the physical appearance, the realism of the anatomy scored high and this is correlated with the ability of the model to enhance 3D learning as was reported by the participants. References 1. Shpilberg, K. A., Daniel, S. C., Doshi, A. H., Lawson, W., & Som, P. M. (2015). CT of anatomic variants of the paranasal sinuses and nasal cavity: poor correlation with radiologically significant rhinosinusitis but importance in surgical planning. American Journal of Roentgenology, 204(6), 1255-1260. 2. Alrasheed, A. S., Nguyen, L. H., Mongeau, L., Funnell, W. R. J., & Tewfik, M. A. (2017, August). Development and validation of a 3D‐printed model of the ostiomeatal complex and frontal sinus for endoscopic sinus surgery training. In International forum of allergy & rhinology (Vol. 7, No. 8, pp. 837-841).
  3. MOREAU PIERRE

    spondy3

    Version 1.0.0

    1 download

    spondylolisthesis plannification, spine, lumbar, .stl, transverse, spinous, foramen, foramina, pelvis, iliac, 3d, model, printable, psoas, muscle, bone, body, intervertebral, disc, aorta, aortosclerosis, sacroiliac, joint,, ct, scan, without, contrast,

    Free

  4. MOREAU PIERRE

    spondy4

    Version 1.0.0

    5 downloads

    spondylolisthesis, spinous, process, transverse, bone, intervertebral, disc, muscle, pelvis, iliac, lumbar, muscles, aorta, aortosclerosis, spondylolisthesis, ct, scan, without, contrast,

    Free

  5. Version 1.0.0

    1 download

    Female Head, whole, body, .stl, 3d, model, ct, scan, without, contrast, petrous, ridge, maxilla, mandible, pharynx, thorax, ribs, scapula, bone, neck, cervical, dorsal, lumbar, spine, sacrum, coccyx, foramina, intervertebral, disc, foramina, intervertebral, disc, head, humerus, chest, mediastinum, cardiac, ventricle, auricle, septum, rectum, sigmoid, hard, palate, nasal, muscle, pelvis, gluteus,

    Free

  6. Version 1.0.0

    2 downloads

    Skeleton from pelvis to ribcage, abdomen, pelvis, ct, scan, with, contrast, axial, dicom, pancreas, liver, spleen, stomach, colon, small, bowel, urinary, bladder, descendent, ascendent, iliac, bone, 3d, model, printable, .stl, foramina, coccyx, sacrum, gluteus, muscle, intervertebral, disc, psoas, kidney, diaphragm, rectum, sigmoid, aorta, celiac, trunk,

    Free

  7. Version 1.0.0

    3 downloads

    Model, ct, scan, without, contrast, .stl, 3d, model, printable, atlas, axis, cervical, spine, angle, ramus, maxillofacial, bone, dicom, hard, palate, dental, dentistry, canine, incisor, molar, premolar,

    Free

  8. Version 1.0.0

    0 downloads

    mand, axial, ct, scan, without, contrast, .stl, 3d, model, printable, atlas, axis, cervical, spine, angle, ramus, maxillofacial, bone, dicom, hard, palate, dental, dentistry, canine, incisor, molar, premolar,

    Free

  9. Version 1.0.0

    1 download

    ct skin - stl file processed Have embodi3D 3D print this model for you. This file was created with democratiz3D. Automatically create 3D printable models from CT scans. abdomen, ct, scan, with, contrast, urinary, bladder, colon, small, bowel, spleen, liver, aorta, diaphragm, psoas, abdominal, muscles, kidney, cava, pelvis, bone, gluteus, muscle, axial, dicom, common, external, internal,

    Free

  10. Version 1.0.0

    0 downloads

    Attempt 3. Istanbul not Constantinople.

    Free

  11. Version 1.0.0

    1 download

    Glasgow NHS, lower, limb, .stl, ct, scan, without, contrast, condyle, soleus, quadriceps, femur, bone, lateral, medial, 3d, model, printing, printable, knee, patella,

    Free

  12. Version 1.0.0

    6 downloads

    Glasgow NHS, condyle, lateral, medial, meniscus, bone, femur, .stl, 3d, model quadriceps, muscle, soleum, lower, limb, ct, scan, without, contrast,

    Free

  13. Version 1.0.0

    0 downloads

    thank you very much. upper, lower, teeth, tooth, ventricle, incisor, molar, bone, ct, scan, without, contrast, hard, palate, septum, ethmoid, cells, atlas, axis, cervical, dens, clivus, foramen, foramina, .stl, petrous, ridge, temporal, zygomatic, arch, maxillary, sinus, paranasal, sinuses,

    Free

  14. Version 1.0.0

    2 downloads

    Rotura de Glena, glenoid, shoulder, scapula, clavicle, neck, trochin, head, skull, ribs, lung, mediastinum, .stl, 3d, model, ct, scan, without, contrast, coronoid, process, glenohumeral, joint, upper, limb, dorsal, spine, intervertebral, disc, body, chest, ventricle, auricle, septum,

    Free

  15. Version 1.0.0

    2 downloads

    This is a CT scan of a man's head and shoulders.

    Free

  16. Version 1.0.0

    3 downloads

    Ct scan lung , mediastinum, thorax, cardiac, heart, great, vessels, aorta, cava, ribs, dorsal, scapula, 3d, model, printable, ct, scan, without, contrast, lung, ventricle, auricle, septum, transverse, spinous, pneumonia, bronchi, diaphragm, clavicle, bone, muscle, chest, sternum,

    Free

  17. Version 1.0.0

    0 downloads

    To process for mandible and condyles., sagittal, contrast, .stl, 3d, model, brain, cerebellum, petrous, ridge, foramina, clivus, atlas, axis, lordosis, muscles, ethmoid, cells, maxillary, sinus, orbit, eyeball, frontal, temporal, parietal, occipital, incisor, molar, premolar, canine, teeth, tooth, dental, dens, mastoid, head, skull, ct, scan, with, contrast, willis, polygon, carotid, yugular, vessels, thyroid, gland, neck, sternum, ribs, bones, muscle, sternocleidomastoid, tentorium, cerebelli,

    Free

  18. Version 1.0.0

    0 downloads

    lower jaw, ct, scan, without, contrast, .stl, 3d, model, printable, ethmoid, cells, maxillary, mandible, coronoid, process, angle, ramus, bone, atlas, axis, cervical, spine, tongue, axial, dens,

    Free

  19. Version 1.0.0

    0 downloads

    Thinns, ct, scan, without, contrast, axial, dicom, .stl, 3d, model, printable, spine, kidney, lumbar, spine, transverse, spinous, sacrum, pelvis, sacroiliac, small, bowel, colon, sigmoid,

    Free

  20. Version 1.0.0

    2 downloads

    skull, eyeball, orbit, nasal, spine, ethmoid, zygomatic, arch, bone, 3d, model, .stl, printable, ct, scan, without, contrast, petrous, ridge, clivus, cerebellum, maxillofacial, frontal, temporal, parietal, occipital, foramina, foramen, craniotomy, hard, palate, edema, brainstem, auditory, conduct, external, ear, longitudinal, sinus,

    Free

  21. Version 1.0.0

    3 downloads

    Broken left eye socket, axial, dicom, .stl, printable, bone, maxillary, sinus, frontal, temporal, parietal, brain, pterygoid, process, clinoid, apophysis, hard, palate, nasal, spine, lips, atlas, axis, dens, ethmoid, cells, eyeball, orbit, incisor, molar, premolar, canine, teeth, zygomatic, arch, sphenoid, ct, scan, without, contrast,

    Free

  22. 3D Free Scapula, Clavicle, and Humerus Models in 3D-Printable STL Format Shoulders are comprised of three main bones. These include humerus (bone in the upper arm), scapula (shoulder blade), and the clavicle, which we commonly refer to as the "collarbone." Bones of the shoulder work together with the transverse humeral ligament, synovial membrane of the bicep, bursa sac, and the superior transverse ligament to perform a complex range of motions. In fact, the shoulder has the most extended pivot range of any joint within the body. Your glenohumearal joint (shoulder) is a ball-and-socket joint that is able to move in so many positions due to the relatively small size of the glenoid fossa, as well as the laxity ("wiggle room") of the joint capsule. But, these features also make the shoulder prone to overuse injuries, subluxation, dislocation, and ligament tears. In this week's embodi3D® Top Ten, we are bringing you some of the best 3D scapula, clavicle, and humerus models which comprise the majority of the human shoulder joint. Before you dive into this week's Top 10 and start printing your own 3D anatomical models, you must first register with embodi3D®. It's absolutely free to sign up and you can take advantage of many of the features found on the embodi3D® website, including standard resolution democratiz3D® conversions. Register with embodi3D® today! Technologies like these were recently featured in the journal Société Internationale de Chirurgie Orthopédique et de Traumatologie (SICOT), where models of a 3D scapula, humerus, and soft tissues are being used in preoperative planning. If you are interested in uploading your CT scans and converting these to 3D-printable STL format, the democratiz3D® Quick Start Guide will help you to quickly get up and running. How Shoulders Achieve Their Range of Motion Flexion, extension, abduction, adduction, circumduction, medial rotation, and lateral rotation. * Flexion: Pectoralis major, deltoid, coracobrachialis, & biceps muscles * Extension: Deltoid & teres major muscles. – If against resistance, also latissimus dorsi & pectoralis major. * Abduction: Deltoid & supraspinatus muscles. – Subscapularis, infraspinatus, & teres minor exert downward traction – Supraspinatus contribution controversial * Medial rotation: Pectoralis major, deltoid, latissimus dorsi, & teres major muscles. – Subscapularis when arm at side * Lateral rotation: Infraspinatus, deltoid, & teres minor muscles. #1. An Incredible 3D Model of the Shoulder in STL Format This articulation is maintained by overlying soft tissue structures. The posterosuperior acromion process of the scapula provides one half of the AC joint. It also forms most of the osseous portion of the coracoacromial arch, the roof over the rotator cuff. The acromion process is connected to the body of the scapula by the spine. The osseous structures of the shoulder girdle are the clavicle, scapula, and humerus. Medially, the clavicle articulates with the manubrium of the sternum at the sternoclavicular (SC) joint. This joint serves as the only true articulation between the shoulder girdle and the axial skeleton. Laterally, the clavicle articulates with the acromion process of the scapula at the acromioclavicular (AC) joint #2. STL File Showing Scapular Notch and Shoulder Variations in the shape of the clavicle are considered normal and are not usually pathologic. These variations may range from an almost straight bone to one with exaggerated curves. Another variation of the clavicle that is present in 6-10% of the population is termed the canalis nervi supraclavicularis. In this variation, a foramen forms through the clavicle, and the medial supraclavicular nerve passes through this accessory osseous canal. The scapular notch varies in size and shape. The notch is bridged by the superior transverse scapular ligament. This ligament ossifies in 10% of patients, producing a bony foramen for the suprascapular nerve. #3. A 3D Model of the Shoulders of the Muscle Rotator cuff: 4 muscles arising on scapula and inserting on humerus * Supraspinatus: From supraspinatus fossa of scapula to greater tuberosity – Abducts humerus, also depresses humeral head. * Infraspinatus: From posterior surface of scapula to greater tuberosity. – Externally rotates humerus * Teres minor: From lateral border of scapula to greater tuberosity – Externally rotates humerus * Subscapularis muscle: From anterior surface of scapula to lesser tuberosity – Superficial fibers extend across to anterior margin of greater tuberosity as part of transverse ligament – Internally rotates, adducts humerus #4. 3D Model (STL Format) of the Muscles Connecting the Arm to Axial Skeleton 4. Various muscles also serve to connect the arm to the axial skeleton. Anteriorly, the pectoralis major and minor muscles extend from the sternum and clavicle to the proximal humeral shaft. Posteriorly, the latissimus dorsi muscle arises from the thoracic cage to attach onto the proximal humeral shaft. The great range of motion provided for by the glenohumeral joint is executed in large part by the muscles of the rotator cuff. The supraspinatus muscle arises superior to the scapular spine and attaches to the superior facet of the greater tuberosity. The more posterior infraspinatus muscle arises below the spine and inserts onto the posterior facet of the greater tuberosity. The teres minor muscle originates and inserts just caudal to the infraspinatus. The subscapularis muscle arises from the anterior scapular body to insert onto the lesser tuberosity. The long head of the biceps originates at the superior glenoid rim, passes through the rotator cuff interval at the anterosuperior glenohumeral joint, and then follows the bicipital groove between the tuberosities into the upper arm. The deltoid muscle has a broad origination along the lateral aspect of the acromion from anterior to posterior. It covers the lateral portion of the upper arm before inserting on to the lateral proximal humeral shaft at the deltoid tuberosity. #5. 3D Model of the Skin around the Shoulder, Arm, and Upper Chest A 3D model of the skin of the shoulder where the soft tissue of the shoulder and arm are shown. Trapezius: is responsible for the smooth contour of the lateral side of the neck and over the superior aspect of the shoulder. It can be seen and felt throughout its entirety when the shoulder girdles are retracted against resistance; the superior part can be palpated when the shoulders are elevated against resistance. Posterior axillary fold: is formed by the latissimus dorsi winding around the lateral border of the teres major muscle. Latissimus dorsi forms much of the muscle mass underlying the posterior axillary fold extending obliquely upward from the trunk to the arm. Teres major passes from the inferior angle of the scapula to the upper humerus and contributes to the fold laterally. Both muscles can be palpated on resisted shoulder adduction. Pectoralis major: can be seen and felt throughout its entire extent when it is contracted against resistance as in pressing the palm together in front of the body. Clavicular fibers can be felt if the shoulder is flexed against resistance to a position midway between flexion and extension, while the sternocostal fibers can be felt if the shoulder is extended against resistance starting in a flexed position. The inferior border of the pectoralis major muscle forms the anterior axillary fold. Deltoid: forms the muscular eminence inferior to the acromion and around the glenohumeral joint. The anterior, middle, and posterior fibers of the deltoid can be palpated. When the arm is abducted against resistance, the anterior border of the deltoid can be felt. The clavipectoral triangle (deltopectoral triangle) is the depressed area just inferior to the lateral part of the clavicle, bounded by the clavicle superiorly, the deltoid laterally, and the clavicular head of the pectoralis major medially. #6. CT Scan Showing a Fracture in the Proximal Humeral A computed tomography (CT) is recommended for complex fracture situations although those situations were not clearly defined. Therefore, precise indications for CT in proximal humeral fractures are not established. #7. Connection of Scapula, Humerus, and Clavicle Shown in 3D STL File The scapula is a spade-shaped bone comprised of a thin triangular body and a semi-ovoid cavity known as the glenoid fossa (glenoid cavity). The glenoid fossa faces lateral and slightly anterior and cranial. A bony spine runs across the dorsal surface of the scapular body and terminates in the acromion. The scapula articulates with two bones, the humerus and clavicle. The scapula does not directly contact the bony rib cage: the two structures are separated by muscle and other soft tissue. #8. Right Shoulder Injury Revealed by CT Scan On CT acute trauma may result of bony, labral, ligamentous or musculotendinous damage. The shoulder may be injured following repetitive injury or as part of systemic inflammatory conditions or infection. Moreover, the bones around the shoulder may be affected by benign or malignant bony lesions, and associated pathological fracture. #9. Right Shoulder with Pleomorphic Spindle Cell Sarcoma (3D-Printable STL File) Pleomorphic sarcoma composed of fibroblasts, myofibroblasts and histiocyte-like cells. Historically considered the most common adult soft tissue sarcoma. Usually older adults (age 50+ years) with slight male predominance; more common in lower extremities, rarely retroperitoneum, head and neck, breast. Large and deep-seated with progressive enlargement. Sarcomas adjacent to orthopedic implants or post-radiation are usually osteosarcoma or MFH. #10. 3D-Printable Model of Right Shoulder Bones The humerus is the large single bone of the upper arm. Proximally, it articulates with the glenoid fossa of the scapula forming the glenohumeral joint. The humeral head is large and globular. Just ventral to the articular surface is the lesser tubercle, where the subscapularis attaches. Lateral to the articular surface is the greater tubercle. The rotator cuff muscles of the shoulder insert on the proximal humerus. References 1. Manaster, B. J., & Crim, J. R. (2016). Imaging Anatomy: Musculoskeletal E-Book. Elsevier Health Sciences. 2. Bahrs, C., Rolauffs, B., Südkamp, N. P., Schmal, H., Eingartner, C., Dietz, K., ... & Helwig, P. (2009). Indications for computed tomography (CT-) diagnostics in proximal humeral fractures: a comparative study of plain radiography and computed tomography. BMC musculoskeletal disorders, 10(1), 33. 3. Duke University Medical School - Anatomy. (2018). Web.duke.edu. Retrieved 4 August 2018, from https://web.duke.edu/anatomy/ 4. Shoulder Joint Anatomy: Overview, Gross Anatomy, Microscopic Anatomy. (2018). Emedicine.medscape.com. Retrieved 4 August 2018, from https://emedicine.medscape.com/article/1899211-overview#a1 5. The Radiology Assistant : Shoulder MR - Anatomy. (2012). Radiologyassistant.nl. Retrieved 4 August 2018, from http://www.radiologyassistant.nl/en/p4f49ef79818c2/shoulder-mr-anatomy.html
  23. Version 1.0.0

    8 downloads

    M/55 17/10/1964, axial, dicom, .stl, 3d, model, printable, lower, turbinates, maxillary, sinus, paranasal, sinuses, masticatory, space, inner, ear, petrous, ridge, atlas, axis, cervical, spine, ethmoid, cells, bone, ct, scan, without, contrast, neck, tongue, incisor, molar, premolar, canine, teeth, tooth, dental, dentistry, coronoid, process, angle, ramus, body,

    Free

  24. Version 1.0.0

    0 downloads

    skull 4th attempt, skull, head, .stl, 3d, model, printable, atlas, axis, cervical, spine, bone, thorax, scapula, clavicle, ribs, heart, mediastinum, abdomen, liver, spleen, kidney, psoas, muscle, small, bowel, colon, lumbar, body, transverse, spinous, ct, scan, without, contrast,

    Free

×
×
  • Create New...