Search the Community

Showing results for tags 'bone'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Blogs

  • Embodi3d Test Blog
  • 3D Printing in Medicine
  • Cool Medical 3D-Printing
  • 3D Bio Printing by Paige Anne Carter
  • SSchoppert's Blog
  • Additive Manufacturing in Medicine
  • biomedical 3D printing
  • Chris Leggett
  • 3D Models Help Improve Surgical Precision, Reduce Operating Time
  • Desktop 3D Printing in Medical Imaging
  • 3D Printing: Radiology corner
  • The Embodi3D.com Blog
  • descobar3d's Blog
  • 3D Printing in Anthropology
  • Learn to 3D Print: Basic Tools from software to printers
  • 3D printing for bio-medicine
  • 3D Biomedical Printing - by Jacob M.
  • Valchanov's Blog
  • Deirdre_Manion-Fischer's Blog
  • Matt Johnson's Biomedical 3D Printing Blog
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Mike at Medical Models

Forums

  • Biomedical 3D Printing
    • News and Trending Topics
    • Hardware and Printers
    • Software
    • Science and Research
    • 3D Printable Models
    • Clinical applications
    • Medical Imaging
    • Education and Conferences
  • General Discussion
    • Announcements
    • Suggestions and Feedback
  • Classifieds, Goods and Services
    • General Classifieds - members post free
    • Services needed
    • Services offered
    • Stuff for sale
    • Stuff needed
    • Post a Job
    • Looking for work - visible only to members

Categories

  • democratiz3D Processing
  • Medical Scan Files
    • Skull, Head, and Neck
    • Dental, Orthodontic, Maxillofacial
    • Thorax and Ribs
    • Abdomen and Pelvis
    • Extremity, Upper (Arm)
    • Extremity, Lower (Leg)
    • Spine
    • Whole Body
  • Bones
    • Skull and Head
    • Dental, Orthodontic, Maxillofacial
    • Spine and Pelvis
    • Extremity, Upper (Arm)
    • Extremity, Lower (Leg)
    • Thorax and Ribs
    • Whole body
    • Skeletal tumors, fractures and bony pathology
  • Muscles
    • Head and neck muscles
    • Extremity, Lower (Leg) Muscles
    • Extremity, Upper (Arm) Muscles
    • Thorax and Ribs Muscles
    • Abdomen and Pelvis muscles
    • Whole body Muscles
    • Muscular tumors and sarcomas
  • Cardiac and Vascular
    • Congenital Heart Defects
    • Heart
    • Aorta
    • Mesenteric and abdominal arteries
    • Veins
  • Brain and nervous system
  • Organs of the Body
  • Veterinary
    • Dogs
    • Cats
  • Paleontology
  • Anthropology
  • Research
  • Miscellaneous
  • Formlabs

Found 42 results

  1. Version 1.0.0

    0 downloads

    Whole body: chest, abdomen and pelvis The chest wall (thoracic cage) is composed by twelve pairs of ribs laterally and the sternum anteriorly. The ribs are attached to the dorsal vertebrae (thoracic spine) posteriorly and along their costal cartilage to the sternum. The thoracic cage main function is to protect the vital chest organs such as the heart and lungs. The cervical spine is the upper most spines forming the spinal column, extending from the skull base to the level of the thoracic vertebra (the spines with attached ribs). The cervical spines are usually seven and the main function is to support the skull and to protect the spinal cord. The dorsal (thoracic) spine forms the middle portion of the vertebral column extending below the seventh cervical vertebra to above the first lumbar vertebra. The dorsal spine is formed by twelve vertebral bodies. The vertebrae forming the dorsal spine are unique in shape as they are the only vertebral bodies articulating with ribs. The lumbar spine represents the mid-lower segment of the vertebral column and is composed of five adjacent vertebrae. They are convex anteriorly to form a lumbar lordosis. The lumbar spine facet joints allows limited movements and rotation. The bony pelvis is formed by 4 bones; a pair of hip bones, the sacrum and the coccyx. The bony pelvis supports the pelvic viscera and works to transmit force from the axial skeleton to the lower limbs. The two hip bones are related anteriorly by the symphysis pubis and posteriorly to the sacroiliac joints bilaterally. The original CT examination can be reviewed at: The 3D bone model created from this scan can be reviewed at: The 3D skin model created from this scan can be reviewed at:

    Free

  2. Version 1.0.0

    0 downloads

    Whole body: chest, abdomen and pelvis The chest wall (thoracic cage) is composed by twelve pairs of ribs laterally and the sternum anteriorly. The ribs are attached to the dorsal vertebrae (thoracic spine) posteriorly and along their costal cartilage to the sternum. The thoracic cage main function is to protect the vital chest organs such as the heart and lungs. The cervical spine is the upper most spines forming the spinal column, extending from the skull base to the level of the thoracic vertebra (the spines with attached ribs). The cervical spines are usually seven and the main function is to support the skull and to protect the spinal cord. The dorsal (thoracic) spine forms the middle portion of the vertebral column extending below the seventh cervical vertebra to above the first lumbar vertebra. The dorsal spine is formed by twelve vertebral bodies. The vertebrae forming the dorsal spine are unique in shape as they are the only vertebral bodies articulating with ribs. The lumbar spine represents the mid-lower segment of the vertebral column and is composed of five adjacent vertebrae. They are convex anteriorly to form a lumbar lordosis. The lumbar spine facet joints allows limited movements and rotation. The bony pelvis is formed by 4 bones; a pair of hip bones, the sacrum and the coccyx. The bony pelvis supports the pelvic viscera and works to transmit force from the axial skeleton to the lower limbs. The two hip bones are related anteriorly by the symphysis pubis and posteriorly to the sacroiliac joints bilaterally. This model represents a case of right para-scapular pleomorphic spindle cell undifferentiated sarcoma in a 61 years old male, dedicated model can be reviewed at: The CT scan is derived from the file STS_037 The 3D bone model created from this scan can be reviewed at: The 3D muscle model created from this scan can be reviewed at: The 3D skin model created from this scan can be reviewed at:

    Free

  3. Version 1.0.0

    9 downloads

    This CT skull presents numerous teeth on the mandibular and maxilary arches - to be used for bone reconstruction

    Free

  4. Version 1.0.0

    0 downloads

    these are bones for a client

    Free

  5. Version 1.0.0

    0 downloads

    This is bone labeled 3 in CT scan

    Free

  6. Version 1.0.0

    0 downloads

    This is for a client

    Free

  7. Version 1.0.0

    CT Scan of both fore limbs from a dog with a slight bone deformity requiring corrective surgery.

    $5.00

  8. Version 1.0.0

    25 downloads

    A thoracic vertebra generated by using the contouring tools in 3DSlicer and smoothed in Blender.

    Free

  9. Version 1.0.0

    1 download

    First try to obtain a skull in printable format

    Free

  10. Version 1.0.0

    3 downloads

    test stack .dicom file to .stl 3D printing file

    Free

  11. Version 1.0.0

    0 downloads

    test

    Free

  12. Version 1.0.0

    9 downloads

    CT maxilla bone with teeth

    Free

  13. Version 1.0.0

    2 downloads

    CT of mandibular bone with severe atrophy

    Free

  14. Version 1.0.0

    0 downloads

    Distal radius fracture

    Free

  15. Version 1.0.0

    17 downloads

    This model is the left foot and ankle bone rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient unfortunately died 9.5 months after diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The ankle is a hinge (or ginglymus) joint made of the distal tibia (tibial plafond, medial and posterior malleoli) superiorly and medially, the distal fibula (lateral malleolus) laterally and the talus inferiorly. Together, these structures form the ankle “mortise”, which refers to the bony arch. Stability is provided by the anterior talofibular ligament (ATFL), calcaneofibular ligament (CFL), and posterior talofibular ligament (PTFL) laterally, and the superficial and deep deltoid ligaments medially. The ankle is one of my most common sites of musculoskeletal injury, including ankle fractures and ankle sprains, due to the ability of the joint to invert and evert. The most common ligament involved in the ATFL. Radiographic analysis of an ankle after injury should include the so-called “mortise view”, upon which measurements can be made to determine congruity of the ankle joint. Normal measurements include >1 mm tibiofibular overlap, </= 4mm medial clear space, and <6 mm of tibiofibular clear space. The talocrural ankle is measured by the bisection of a line through the tibial anatomical axis and another line through the tips of the malleoli. Shortening of the lateral malleolus can lead to an increased talocrural angle. The foot is commonly divided into three segments: hindfoot, midfoot, and forefoot. These sections are divided by the transverse tarsal joint (between the talus and calcaneus proximally and navicular and cuboid distally), and the tarsometatarsal joint (between the cuboids and cuneiforms proximally and the metatarsals distally). The first tarsometatarsal joint (medially) is termed the “Lisfranc” joint, and is the site of the Lisfranc injury seen primarily in athletic injuries. This model was created from the file STS_023.

    Free

  16. Version 1.0.0

    14 downloads

    This model is the right foot and ankle bone rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient unfortunately died 9.5 months after diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The ankle is a hinge (or ginglymus) joint made of the distal tibia (tibial plafond, medial and posterior malleoli) superiorly and medially, the distal fibula (lateral malleolus) laterally and the talus inferiorly. Together, these structures form the ankle “mortise”, which refers to the bony arch. Stability is provided by the anterior talofibular ligament (ATFL), calcaneofibular ligament (CFL), and posterior talofibular ligament (PTFL) laterally, and the superficial and deep deltoid ligaments medially. The ankle is one of my most common sites of musculoskeletal injury, including ankle fractures and ankle sprains, due to the ability of the joint to invert and evert. The most common ligament involved in the ATFL. Radiographic analysis of an ankle after injury should include the so-called “mortise view”, upon which measurements can be made to determine congruity of the ankle joint. Normal measurements include >1 mm tibiofibular overlap, </= 4mm medial clear space, and <6 mm of tibiofibular clear space. The talocrural ankle is measured by the bisection of a line through the tibial anatomical axis and another line through the tips of the malleoli. Shortening of the lateral malleolus can lead to an increased talocrural angle. The foot is commonly divided into three segments: hindfoot, midfoot, and forefoot. These sections are divided by the transverse tarsal joint (between the talus and calcaneus proximally and navicular and cuboid distally), and the tarsometatarsal joint (between the cuboids and cuneiforms proximally and the metatarsals distally). The first tarsometatarsal joint (medially) is termed the “Lisfranc” joint, and is the site of the Lisfranc injury seen primarily in athletic injuries. This model was created from the file STS_023.

    Free

  17. Version 1.0.0

    11 downloads

    This model is the left lower extremity bone rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing The lower extremity consists of the femur, tibia, fibula, and foot. The femur has an anterior bow of differing degrees, which is important to understand when fixing a femur fracture with an intramedullary nail to not penetrate the anterior cortex. Distally, the femur includes the medial and lateral femoral condyles, which articulate with the proximal tibia to form the knee joint, as well as the trochlea anteriorly, which articulates with the patella. The proximal tibia includes the medial plateau (which is concave) and the lateral plateau (which is convex). The Proximal tibia has a 7-10 degree posterior slope. On the anterior proximal tibia, the tibial tuberosity, where the patellar tendon attaches. On the anteromedial surface of the tibia is Gerdy's tubercle, where the sartorius, gracilis, and semitendinosus attach. The distal tibia creates the superior and medial (plafond and medial malleolus) of the ankle joint. The proximal fibula is the attachment for the posterolateral corner structures of the knee joint. The peroneal nerve wraps around the fibular neck. The distal fibula is the lateral malleolus and a common site for ankle fractures. This model was created from the file STS_022.

    Free

  18. Version 1.0.0

    7 downloads

    This model is the left leg bone rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The leg includes the area between the knee and the ankle and houses the tibia and fibula. The proximal tibia includes the medial plateau (which is concave) and the lateral plateau (which is convex). The Proximal tibia has a 7-10 degree posterior slope. The tibial tuberosity is located on the anterior proximal tibia, which is where the patellar tendon attaches. On the anteromedial surface of the tibia is Gerdy's tubercle, where the sartorius, gracilis, and semitendinosus attach. The distal tibia creates the superior and medial (plafond and medial malleolus) of the ankle joint. The proximal fibula is the attachment for the posterolateral corner structures of the knee joint. The peroneal nerve wraps around the fibular neck. The distal fibula is the lateral malleolus and a common site for ankle fractures. The ankle is a hinge (or ginglymus) joint made of the distal tibia (tibial plafond, medial and posterior malleoli) superiorly and medially, the distal fibula (lateral malleolus) laterally and the talus inferiorly. Together, these structures form the ankle “mortise”, which refers to the bony arch. Normal range of motion is 20 degrees dorsiflexion and 50 degrees plantarflexion. Stability is provided by the anterior talofibular ligament (ATFL), calcaneofibular ligament (CFL), and posterior talofibular ligament (PTFL) laterally, and the superficial and deep deltoid ligaments medially. The ankle is one of my most common sites of musculoskeletal injury, including ankle fractures and ankle sprains, due to the ability of the joint to invert and evert. The most common ligament involved in the ATFL. The foot is commonly divided into three segments: hindfoot, midfoot, and forefoot. These sections are divided by the transverse tarsal joint (between the talus and calcaneus proximally and navicular and cuboid distally), and the tarsometatarsal joint (between the cuboids and cuneiforms proximally and the metatarsals distally). The first tarsometatarsal joint (medially) is termed the “Lisfranc” joint, and is the site of the Lisfranc injury seen primarily in athletic injuries. This model was created from the file STS_022.

    Free

  19. Version 1.0.0

    12 downloads

    This model is the right lower extremity bone rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The leg includes the area between the knee and the ankle and houses the tibia and fibula. The proximal tibia includes the medial plateau (which is concave) and the lateral plateau (which is convex). The Proximal tibia has a 7-10 degree posterior slope. The tibial tuberosity is located on the anterior proximal tibia, which is where the patellar tendon attaches. On the anteromedial surface of the tibia is Gerdy's tubercle, where the sartorius, gracilis, and semitendinosus attach. The distal tibia creates the superior and medial (plafond and medial malleolus) of the ankle joint. The proximal fibula is the attachment for the posterolateral corner structures of the knee joint. The peroneal nerve wraps around the fibular neck. The distal fibula is the lateral malleolus and a common site for ankle fractures. The ankle is a hinge (or ginglymus) joint made of the distal tibia (tibial plafond, medial and posterior malleoli) superiorly and medially, the distal fibula (lateral malleolus) laterally and the talus inferiorly. Together, these structures form the ankle “mortise”, which refers to the bony arch. Normal range of motion is 20 degrees dorsiflexion and 50 degrees plantarflexion. Stability is provided by the anterior talofibular ligament (ATFL), calcaneofibular ligament (CFL), and posterior talofibular ligament (PTFL) laterally, and the superficial and deep deltoid ligaments medially. The ankle is one of my most common sites of musculoskeletal injury, including ankle fractures and ankle sprains, due to the ability of the joint to invert and evert. The most common ligament involved in the ATFL. The foot is commonly divided into three segments: hindfoot, midfoot, and forefoot. These sections are divided by the transverse tarsal joint (between the talus and calcaneus proximally and navicular and cuboid distally), and the tarsometatarsal joint (between the cuboids and cuneiforms proximally and the metatarsals distally). The first tarsometatarsal joint (medially) is termed the “Lisfranc” joint, and is the site of the Lisfranc injury seen primarily in athletic injuries. This model was created from the file STS_022.

    Free

  20. Version 1.0.0

    22 downloads

    This model is the right knee bone rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The knee is composed of 3 separate joints: two hinge joints (medial and lateral femorotibial joints), and one sellar, or gliding, joint (the patellofemoral joint). These also compose the three compartments of the knee: medial, lateral, and patellofemoral. Although the knee is thought of as a hinge joint, it has 6 degrees of motion: extension/flexion, internal/external rotation, varus/valgus, anterior/posterior translation, medial/lateral translation, and compression/distraction. To provide stability to the joint, static and dynamic stabilizers surround the knee, including muscles and ligaments. The major ligaments that provide stability to the knee include the anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), lateral (or fibular) collateral ligament (LCL), and medial collateral ligament (MCL). The ACL prevents anterior translation of the knee and the PCL prevents posterior translation of the knee. The LCL prevents varus stresses and the MCL prevents valgus stresses on the knee. Furthermore, the medial meniscus is a secondary stabilizer to anterior translation and is therefore commonly injured during an ACL tear or after an untreated ACL tear. This model was created from the file STS_022.

    Free

  21. Version 1.0.0

    2 downloads

    CT of maxillary bone with one tooth remaining on the jaw

    Free

  22. Version 1.0.0

    2 downloads

    CT of mandible- skull with six dental implants

    Free

  23. Version 1.0.0

    6 downloads

    CT of maxillary bone with severe atrophy- 3D printing

    Free

  24. Version 1.0.0

    3 downloads

    This is the normal left leg bone model (including foot) of a 56 year old male with right anterior thigh pleomorphic leiomyosarcoma. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The leg includes the area between the knee and the ankle and houses the tibia and fibula. The proximal tibia includes the medial plateau (which is concave) and the lateral plateau (which is convex). The Proximal tibia has a 7-10 degree posterior slope. The tibial tuberosity is located on the anterior proximal tibia, which is where the patellar tendon attaches. On the anteromedial surface of the tibia is Gerdy's tubercle, where the sartorius, gracilis, and semitendinosus attach. The distal tibia creates the superior and medial (plafond and medial malleolus) of the ankle joint. The proximal fibula is the attachment for the posterolateral corner structures of the knee joint. The peroneal nerve wraps around the fibular neck. The distal fibula is the lateral malleolus and a common site for ankle fractures. This model was created from the file STS_014.

    Free

  25. Version 1.0.0

    3 downloads

    This is the normal right leg bone model (including foot) of a 56 year old male with right anterior thigh pleomorphic leiomyosarcoma. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The leg includes the area between the knee and the ankle and houses the tibia and fibula. The proximal tibia includes the medial plateau (which is concave) and the lateral plateau (which is convex). The Proximal tibia has a 7-10 degree posterior slope. The tibial tuberosity is located on the anterior proximal tibia, which is where the patellar tendon attaches. On the anteromedial surface of the tibia is Gerdy's tubercle, where the sartorius, gracilis, and semitendinosus attach. The distal tibia creates the superior and medial (plafond and medial malleolus) of the ankle joint. The proximal fibula is the attachment for the posterolateral corner structures of the knee joint. The peroneal nerve wraps around the fibular neck. The distal fibula is the lateral malleolus and a common site for ankle fractures. This model was created from the file STS_014.

    Free