Search the Community

Showing results for tags 'Scoliosis'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Blogs

  • Embodi3d Test Blog
  • Cool Medical 3D-Printing
  • 3D Printing in Medicine
  • 3D Bio Printing by Paige Anne Carter
  • SSchoppert's Blog
  • Additive Manufacturing in Medicine
  • biomedical 3D printing
  • Chris Leggett
  • 3D Models Help Improve Surgical Precision, Reduce Operating Time
  • 3D Printing in Anthropology
  • Desktop 3D Printing in Medical Imaging
  • 3D Printing: Radiology corner
  • The Embodi3D.com Blog
  • descobar3d's Blog
  • Learn to 3D Print: Basic Tools from software to printers
  • 3D printing for bio-medicine
  • 3D Biomedical Printing - by Jacob M.
  • Valchanov's Blog
  • Deirdre_Manion-Fischer's Blog
  • Matt Johnson's Biomedical 3D Printing Blog
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Mike at Medical Models

Forums

  • Biomedical 3D Printing
    • News and Trending Topics
    • Hardware and Printers
    • Software
    • Science and Research
    • 3D Printable Models
    • Clinical applications
    • Medical Imaging
    • Education and Conferences
  • General Discussion
    • Announcements
    • Suggestions and Feedback
  • Classifieds, Goods and Services
    • General Classifieds - members post free
    • Services needed
    • Services offered
    • Stuff for sale
    • Stuff needed
    • Post a Job
    • Looking for work - visible only to members

Categories

  • democratiz3D Processing
  • Medical Scan Files
    • Skull and Head
    • Dental, Orthodontic, Maxillofacial
    • Abdomen and Pelvis
    • Extremity, Upper (Arm)
    • Extremity, Lower (Leg)
    • Thorax and Ribs
    • Whole Body
  • Bones
    • Skull and Head
    • Dental, Orthodontic, Maxillofacial
    • Spine and Pelvis
    • Extremity, Upper (Arm)
    • Extremity, Lower (Leg)
    • Thorax and Ribs
    • Whole body
    • Skeletal tumors, fractures and bony pathology
  • Muscles
    • Head and neck muscles
    • Extremity, Lower (Leg) Muscles
    • Extremity, Upper (Arm) Muscles
    • Thorax and Ribs Muscles
    • Abdomen and Pelvis muscles
    • Whole body Muscles
    • Muscular tumors and sarcomas
  • Cardiac and Vascular
    • Congenital Heart Defects
    • Heart
    • Aorta
    • Mesenteric and abdominal arteries
    • Veins
  • Brain and nervous system
  • Organs of the Body
  • Veterinary
    • Dogs
    • Cats
  • Paleontology
  • Anthropology
  • Research
  • Miscellaneous
  • Formlabs

Found 12 results

  1. Last week, 3D Systems announced the successful completion of its pilot program for a 3D-printed brace for children and young adults with scoliosis (curved spine). As with other 3D-printed braces, the “Bespoke Brace” is personalized for each patient. In a first step, the patient is fitted with a prototype brace. Once this prototype has been customized, it is digitized to create a digital reference underlay. Next, the brace is further adjusted digitally and finally 3D-printed using selective laser sintering (SLS) technology, resulting in optimal comfort (it breathes and is light weight), flexibility and durability. As an added bonus, it is more stylish than existing braces on the market. For updates on news and new blog entries, follow us on Twitter at @Embodi3D Photo credit: 3D Systems.com
  2. Version 1.0.2

    10 downloads

    my son's ct scan scoliosis

    Free

  3. Version 1.0.1

    1 download

    my son's ct scan scoliosis

    Free

  4. Version 1.0.0

    0 downloads

    my son's ct scan scoliosis

    Free

  5. Version 1.0.0

    0 downloads

    severe scoliosis child

    Free

  6. An interesting article. http://www.3ders.org//articles/20161111-waspmedical-is-revolutionizing-scoliosis-treatment-with-3d-printing.html
  7. Role of 3D Printing in Scoliosis Correction Surgery Scoliosis is a medical condition in which a person's spine has a sideways curve. The curve is usually "S" or "C" shaped. Scoliosis occurs most often during the growth spurt just before puberty. In some cases, the person suffering from the disease can be left unable to stand up straight, to walk, or even, in the most severe cases, to breathe properly. In the most severe scoliosis cases, however, surgery is the only option. Back surgery is never a minor procedure, and scoliosis surgery is especially tricky, as it requires screws or wires to be placed throughout multiple vertebrae and then connected to stabilize the back Fig: Scoliosis Example 3D printing has done quite a bit to make scoliosis treatment less agonizing for even severe cases. Here is an over view of how 3D Printing is a complete package in diagnosing, treatment and rehabilitation for scoliosis patients. · 3D Printed Patient Specific Models for Pre-Surgical Planning Recognition of complex anatomical structures in scoliosis can sometimes be difficult to attain from simple 2D radio-graphic views. 3D models of patients’ anatomy facilitate this task and allow doctors to familiarize themselves with a specific patient. This approach proved to reduce drastically OT time, especially in complex scoliosis cases. Getting to know patients’ anatomy before entering an OT allows to plan the exact approach, helps to predict bottlenecks and even test procedures beforehand. Fig: Scoliosis Pre operative model to be 3D Printed. No standard models nor 2D images can replace 3D printing as the first do not represent the specific case in debate and the latter may hide important details, especially in the spatial relationship between structures. 3D prints may be as well used by a doctor to explain to a patient his or her condition. Offering a patient possibility to understand his case and procedure may be reassuring and produce better treatment outcome by reducing stress and insecurity. · 3D Printed Patient Specific Surgical Guides in Scoliosis Another recent advancement in the 3D Printing applications for spine surgeries are the 3D-printed Patient specific pedicle screw guides, realized in a customized manner with 3D printers. Their aim is to orient and guide in a precise fashion the placement of the screw in the pedicle. In complex scoliosis cases and revision surgeries it is very difficult to find the pedicle and the entry point for the screw guides. 3D Printing addresses this challenge and proves to be accurate, this level of accuracy is absolutely useful for patients with scoliosis, whose common anatomical landmarks can be in an abnormal position or might be not easily recognizable. Fig: Patient specific 3D printed guides. The guides involve surgical planning and software assisting surgical placement of pedicle screws designed specifically for a patients' unique anatomy. It is essentially a 3D printed surgical tool that fits the patient's unique anatomy. The 3D Printed surgical guides are printed in SLS and are bio compatible to be used on the patient's body. It is easy to see how these new customizable tools can greatly improve Scoliosis Surgery outcomes. These enhanced tools promise to improve patient satisfaction and physician performance, using the tailor-made patient-specific guides for the spine vertebrae utilizing proprietary CT scan algorithms and sophisticated 3-D medical printing technology. · 3D Printed Patient Specific Braces for Scoliosis Moderately severe scoliosis (30-45 degrees) in a child who is still growing may require bracing. The main goal of 3D Printed scoliosis brace is to combine fashion, design, and technology to create a brace far more appealing to patients, and, as a result, far more effective medically. Fig: 3D Printed scoliosis Brace. The 3D Printed patient specific brace represents a meaningful innovation in scoliosis treatment. Using advanced 3D scanning and printing technology, the Scoliosis Brace addresses the most common objections to traditional bracing. The 3D Printed braces are usually printed in SLS (Selective Laser Sintering) for its strength durability and aesthetic features along with bio compatibility. This is what happens when Design innovation meets Medical Innovation. To conclude the use of three dimensional printing in scoliosis surgeries has a wide range of applications from pre operative models to patient specific guides and orthotics proving to be a complete package in aiding Scoliosis surgeries and treatment.
  8. Version 1.0.0

    14 downloads

    This 3D printable STL file contains a model of the thoracic spine derived from a CT. The spine has significant scoliosis (abnormal curvature) This model was created using the Imag3D 3D model creation service TCGA-DD-A1E9 thorax with scoliosis - processed

    Free

  9. Version 1.0.0

    5 downloads

    This 3D printable model of the spine was derived from the CT scan of a 83 year old female. It shows scoliosis of the thoracic spine. This model was created using the Imag3D 3D model creation service. STS_005 150

    Free

  10. Defects and deformities of the vertebral column can have a debilitating impact on the patient’s quality of life. Thirteen-year-old Jocelynn Taylor was no different. She was diagnosed with scoliosis, a condition characterized by an abnormally curved spine that may develop in children during one of their growth spurts. Jocelynn’s condition prevented her from being active in school and at home. Her vertebral column was also pushing her lungs and preventing her from breathing normally. 3D Printing Aids in Complex Spinal Surgery Unlike most scoliosis patients, Jocelynn’s curvature extended past 100 degrees and required a complex surgery. Physicians at Children’s Hospital in Colorado took up the challenge under the supervision of Dr. Sumeet Garg. They worked closely with engineers at Mighty Oak Medical to create a specific three-dimensional (3D) model of Jocelynn’s spine. The model helped Dr. Garg with pre-surgical planning. He also practiced the surgery several times prior to the actual procedure and was prepared for any eventuality that could have crop up during the intervention. The surgeon also relied on additive printing technology to print customized brackets to straighten the vertebral column. Since the surgery, Jocelynn has been able to live life to without any restrictions and is immensely excited about the upcoming school year. Dr. Ralph Mobbs, a neurosurgeon at the Prince of Wales Hospital in Sydney, worked with an Australian medical device company to print an exact replica of a patient’s cervical spine and its underlying tumor. He used the model to understand the patient’s anatomy and practice the surgical intervention. In the past, doctors usually avoided such procedures as one small mistake could lead to permanent nerve damage and quadriplegia. The 3D model helped Dr. Mobbs successfully remove the patient’s tumor without impacting the surrounding nerves. Approximately 276,000 people across the United States are living with spinal cord injuries. An estimated 7 million people suffer from scoliosis. About 24,000 men and women have malignant tumors in their spinal cord. People also suffer from other spinal conditions such as spondylosis and intervertebral disc degeneration. Additive printing technology is influencing the way doctors approach these conditions and is helping improve patient outcomes significantly. 3D Printing Spinal Implants Spinal tumors have also received a lot of attention in recent times. While their treatment often involves drastic measures, 3D printing is making it easier for patients to recover and rehabilitate quickly after the intervention. For example, surgeons in China had to remove a significant portion of a patient’s backbone along with the tumor to prevent the spread of his cancer. While the patient was able to beat the disease, he was unable to use his legs. Orthopedic surgeons at Beijing’s Third University Hospital, under the supervision of Dr. Liu Zhongjun, 3D printed patient-specific spinal implants to replace five missing vertebrae. The 7.5-inch long titanium mesh constructs allow the patient’s own spinal cord to grow over time, and the implant will automatically biodegrade over time. Although some of these cases have received extensive media attention, they are not the only ones. Doctors across the globe are relying on 3D medical printing and bioprinting technologies to treat and manage many types of spinal conditions. In another important step forward,Oxford Performance Materials (OPM) received the Food and Drug Administration (FDA) approval for its spinal implant system designed to replace thoracolumbar vertebrae T10 to L1. The Connecticut-based company is now offering hope to thousands of patients with spinal trauma or cancer. The polymer construct met all the load-bearing and fatigue requirements of the FDA and is now available for patient use through specific distributors. OPM is working to expand its product line to include additional lumbar and cervical vertebrae. Other companies and research organizations are also looking for newer treatments that will help patients lead productive lives, in spite of their spinal problems. Collectively, these attempts will make 3D printing technology indispensable in the not-so-distant future. Sources http://www.abc.net.au/news/2016-02-22/tumour-patient-gets-worlds-first-3d-printed-vertebrae/7183132 http://english.cntv.cn/2014/08/18/VIDE1408306798015287.shtml http://www.tctmagazine.com/3D-printing-news/oxford-performance-materials-gets-fda-approval-for-first-in-kind-spine-fab-3d-printed-127384/
  11. 3D printing has become an indispensable tool in the medical industry. It has encompassed numerous applications from creating simple customized medical tools, surgical models, implants, to orthopedic casts. This technology continues to expand as researchers develop many intriguing yet effective devices using a simple 3D printer. One such innovation introduced to the world recently was the 3D printed braces intended for patients with scoliosis. 3D Systems, the South Carolina-based company, released their prototype for back braces to correct the abnormal curvature of the spine among patients with severe scoliosis. The braces are customized to fit the shape of the patient’s body. The braces also have corrective features so that patients can be comfortable but experience improvement while wearing the braces. This technology was adopted by Chinese medical researchers from the National Rehabilitation Aids Research in Beijing to treat patients suffering from mild to moderate scoliosis. The Chinese researchers worked with orthopedic surgeons from Germany led by Dr. Hans-Rudolf Weiss. Conventional braces are very difficult to wear as they are chunky and provide a lot of discomfort to patients. Moreover, it is also embarrassing for most people to wear conventional braces because they look like alien contraptions stuck in their bodies. The researchers developed customizable braces that slimly fit the body of patients and it comes with a lot of patterns to improve the air flow thus decreasing discomfort and build up of heat. The new braces are made from thermoplastics thus they are very light but strong enough to support and re-align the problematic back. This innovation will surely help a lot of patients suffering from scoliosis all over the world.
  12. Version

    30 downloads

    This 3D printable STL file of a thoracic spine with severe scoliosis was generated from real CT scan data and is thus anatomically accurate as it comes from a real person. It shows how the vertebrae become misaligned in the scoliotic spine. Great for education at all levels. Download is free for registered members. This file was originally created by Dr. Bruno Gobbato, who has graciously given permission to share it here on Embodi3D. Modifications were made by Dr. Mike to make it suitable for 3D printing. The file(s) are distributed under the Creative Commons Attribution-NonCommercial-ShareAlike license. It can't be used for commercial purposes. If you would like to use it for commercial purposes, please contact the authors. Technical specs: File format: STL Manifold mesh: Yes Triangles: 261682

    Free