Search the Community

Showing results for tags 'Otology'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Blogs

  • Embodi3d Test Blog
  • Cool Medical 3D-Printing
  • 3D Printing in Medicine
  • 3D Bio Printing by Paige Anne Carter
  • SSchoppert's Blog
  • Additive Manufacturing in Medicine
  • biomedical 3D printing
  • Chris Leggett
  • 3D Models Help Improve Surgical Precision, Reduce Operating Time
  • 3D Printing in Anthropology
  • Desktop 3D Printing in Medical Imaging
  • 3D Printing: Radiology corner
  • The Embodi3D.com Blog
  • descobar3d's Blog
  • Learn to 3D Print: Basic Tools from software to printers
  • 3D printing for bio-medicine
  • 3D Biomedical Printing - by Jacob M.
  • Valchanov's Blog
  • Deirdre_Manion-Fischer's Blog
  • Matt Johnson's Biomedical 3D Printing Blog
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Mike at Medical Models

Forums

  • Biomedical 3D Printing
    • Hardware and Printers
    • Software
    • Research Applications
    • News and Trending Topics
    • 3D Printable Models
    • Clinical applications
    • Paleontology
    • Anthropology
    • Education
  • General Discussion
    • Announcements
    • Suggestions and Feedback
  • Classifieds, Goods and Services
    • General Classifieds - members post free
    • Services needed
    • Services offered
    • Stuff for sale
    • Stuff needed
    • Post a Job
    • Looking for work - visible only to members

Categories

  • democratiz3D Processing
  • Bones
    • Skull and Head
    • Dental, Orthodontic, Maxillofacial
    • Spine and Pelvis
    • Extremity, Upper (Arm)
    • Extremity, Lower (Leg)
    • Thorax and Ribs
    • Whole body
    • Skeletal tumors, fractures and bony pathology
  • Muscles
    • Head and neck muscles
    • Extremity, Lower (Leg) Muscles
    • Extremity, Upper (Arm) Muscles
    • Thorax and Ribs Muscles
    • Abdomen and Pelvis muscles
    • Whole body Muscles
    • Muscular tumors and sarcomas
  • Cardiac and Vascular
    • Congenital Heart Defects
    • Heart
    • Aorta
    • Mesenteric and abdominal arteries
    • Veins
  • Brain and nervous system
  • Organs of the Body
  • Veterinary
    • Dogs
    • Cats
  • Paleontology
  • Anthropology
  • Research
  • Miscellaneous
  • Formlabs

Found 1 result

  1. Recent developments in the field of three-dimensional (3D) medical printing and bioprinting can revolutionize the way doctors approach ear disorders. The technology, also known as additive printing, allows the user to deposit a desired material on a specific substrate in a pre-determined manner to create 3D prints with definitive shapes and sizes. Scientists and healthcare professionals are already relying on this technology to create surgical instruments, anatomical models, diagnostic tools, prosthetics and even body parts. These novel solutions are offering hope to more than 360 million men, women and children across the globe who suffer from some form of hearing loss. 3D Printing and Smart Phones Make for Easy and Affordable Diagnoses Recently, students of A&M Texas University’s chapter of Engineering World Health used a 3D printer to create LED ostoscope smartphone attachments that take pictures of the patients’ inner ears and help diagnose conditions contributing to hearing loss. Unlike traditional ostoscopes that cost hundreds of dollars, these smartphone attachments can be built for just $6.42. Doctors working in underprivileged areas of South Asia, Asia Pacific and Sub-Saharan Africa can depend on this imaging device for accurate diagnosis, prompt treatment and effective prognosis. 3D Printed Hearing Aids Ontenna, a simple hairclip with a built-in hearing aid, is another glowing example of the way 3D printing technology is impacting Otology. The 3D printed device picks up sounds between 30 and 90 decibles and translates them into 256 different vibrations and light patterns that allow the wearer to actually feel and see the sound. Ontenna was developed by Tatsuya Honda, a researcher and sign language interpreter, who worked closely with the deaf community and understood the drawbacks of traditional hearing aids. The device is currently in the testing phase and may soon be available for commercial use. 3D Printing and Ear Prosthetics In another pioneering attempt, physicians at Royal Hospital for Sick Children in Edinburgh, Scotland, under the supervision of Dr. Ken Stewart, adopted the 3D printing technology to treat microtia, a congenital disorder characterized by underdeveloped ears. Traditionally, children with this condition were required to lay down in an MRI machine for a significant period of time while the doctors obtained a 2D tracing of the normal ear. Understandably, most children were overwhelmed by the process and became fearful of it. Doctors in Edinburgh are now using a 3D scanner to obtain the exact dimensions of the child’s ear. A 3D printer then creates a replica of the organ, which is sterilized and used during the carving process. Dr. Stewart is also working with Edinburgh University’s Centre for Regenerative Medicine and Chemistry Department to bioprint an ear using the patient’s own stem cells and is very excited about the potential of 3D printing in managing hearing loss. 3D Printing the Ear A study published in the October, 2015, edition of the journal Nature Biotechnology revealed that researchers have succeeded in printing human-sized ears with the help of the Integrated Tissue and Organ Printing System (ITOP) and have implanted them into mice. The implanted organs retained their shape over the next two months and formed blood vessels and cartilages. Success of ITOP in animal models is a big step in the right direction as it will allow doctors to print complex ear implants that are stable and functional. Most people take their sense of hearing for granted. However, many conditions ranging from infections and injuries to fluid problems can impact it. Physicians and patients are looking for treatments that will help overcome deficiencies associated with existing modalities, and 3D printing technology is helping them do just that. Sources: http://thebridge.jp/en/2015/08/ontenna-lets-you-hear-sounds-through-your-hair http://www.bustle.com/articles/142312-3d-printed-ear-jaw-muscle-implants-are-revolutionizing-medical-technology