Jump to content

Search the Community

Showing results for tags '3d printable ct scan'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Blogs

  • Embodi3d Test Blog
  • 3D Printing in Medicine
  • Cool Medical 3D-Printing
  • 3D Bio Printing by Paige Anne Carter
  • SSchoppert's Blog
  • Additive Manufacturing in Medicine
  • biomedical 3D printing
  • Bryce's Blog
  • Chris Leggett
  • 3D Models Help Improve Surgical Precision, Reduce Operating Time
  • Desktop 3D Printing in Medical Imaging
  • 3D Printing: Radiology corner
  • The Embodi3D.com Blog
  • descobar3d's Blog
  • 3D Printing in Anthropology
  • Learn to 3D Print: Basic Tools from software to printers
  • 3D printing for bio-medicine
  • 3D Biomedical Printing - by Jacob M.
  • Valchanov's Blog
  • Deirdre_Manion-Fischer's Blog
  • Matt Johnson's Biomedical 3D Printing Blog
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Mike at Medical Models
  • TOP TEN THE MOST DOWNLOADED EMBODI3D

Forums

  • Biomedical 3D Printing
    • Hardware and 3D Printers
    • democratiz3D®
    • Software
    • Clinical applications
    • 3D Printable Models
    • Medical Imaging: CT, MRI, US
    • Science and Research
    • News and Trending Topics
    • Education, Conferences, Meetings, Events
  • General
    • Announcements
    • Questions and Answers
    • Suggestions and Feedback
    • Member Lounge (members only)
  • Classifieds, Goods and Services
    • General Classifieds - members post free
    • Services needed
    • Services offered
    • Stuff for sale/needed
    • Post a Job
    • Looking for work - visible only to members

Categories

  • democratiz3D® Processing
  • Bones
    • Skull and Head
    • Dental, Orthodontic, Maxillofacial
    • Spine and Pelvis
    • Extremity, Upper (Arm)
    • Extremity, Lower (Leg)
    • Thorax and Ribs
    • Whole body
    • Skeletal tumors, fractures and bony pathology
  • Muscles
    • Head and neck muscles
    • Extremity, Lower (Leg) Muscles
    • Extremity, Upper (Arm) Muscles
    • Thorax and Ribs Muscles
    • Abdomen and Pelvis muscles
    • Whole body Muscles
    • Muscular tumors and sarcomas
  • Cardiac and Vascular
    • Heart
    • Congenital Heart Defects
    • Aorta
    • Mesenteric and abdominal arteries
    • Veins
  • Organs of the Body
    • Brain and nervous system
    • Kidneys
    • Lungs
    • Liver
    • Other organs
  • Skin
  • Veterinary
    • Dogs
    • Cats
    • Other
  • Science and Research
    • Paleontology
    • Anthropology
    • Misc Research
  • Miscellaneous
    • Formlabs
  • Medical CT Scan Files
    • Skull, Head, and Neck CTs
    • Dental, Orthodontic, Maxillofacial CTs
    • Thorax and Ribs CTs
    • Abdomen and Pelvis CTs
    • Extremity, Upper (Arm) CTs
    • Extremity, Lower (Leg) CTs
    • Spine CTs
    • Whole Body CTs
    • MRIs
    • Ultrasound
    • Veterinary/Animals
    • Other

Product Groups

  • Premium Services
  • Physical Print Quotes

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Name


Secondary Email Address


Interests

Found 4 results

  1. Version 1.0.0

    6 downloads

    This model is the left thigh muscle rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient unfortunately died 9.5 months after diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. Myxoid fibrosarcoma (or myxoid MFH) is the most common subtype of MFH, at about 10%-20% of cases. Clinically, the tumor presents as a deep, slow-growing, painless mass. It is located more commonly in the lower extremities and retroperitoneum. Imaging on MRI demonstrates a mass with low signal intensity on T1-weighting imaging, and high signal intensity on T2-weighted imaging. On histology, a myxoid background is present with a storiform (or cartwheel) pattern seen on low-power imaging, seen in fibrosarcomas. A “myxoid background” is composed of a clear, mucoid substance. Treatment includes radiation, wide surgical resection, and chemotherapy in selected cases. However, the 5-year survival is 50%-60% depending on size, grade, depth and presence of metastasis. The term “malignant fibrous histiocytoma” was coined in the 1960s by Margaret R. Murray when histology a sarcoma demonstrated an appearance like histiocytes, with characteristics of phagocytosis and a pleomorphic pattern. With further research, this entity was identified to have a wider range of appearances with a fibrous characteristic. Today, these sarcomas are known as “pleomorphic sarcomas.” Recently, a change in the understanding of soft tissue tumors has purported that MFH is not a specific type of cancer, but a common morphologic pattern shared by unrelated tumors. One school of thought states that this morphologic pattern is shared by tumors as a common final pathway in cancer progression whereas another school of thought believes that true pleomorphic sarcomas are the result of a transformation from mesenchymal stem cells. Future research into understanding the pathway of these sarcomas and progression will help to target specific therapies and, hopefully, eventual cures. This model was created from the file STS_023.

    Free

  2. Version 1.0.0

    30 downloads

    This model is the right foot and ankle muscle rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient unfortunately died 9.5 months after diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The primary motions of the ankle are dorsiflexion, plantarflexion, inversion and eversion. However with the addition of midfoot motion (adduction, and abduction), the foot may supinate (inversion and adduction) or pronate (eversion and abduction). In order to accomplish these motions, muscles outside of the foot (extrinsic) and muscles within the foot (intrinsic) attach throughout the foot, crossing one or more joints. Laterally, the peroneus brevis and tertius attach on the proximal fifth metatarsal to evert the foot. The peroneus longus courses under the cuboid to attach on the plantar surface of the first metatarsal, acting as the primary plantarflexor of the first ray and, secondarily, the foot. Together, these muscles also assist in stabilizing the ankle for patients with deficient lateral ankle ligaments from chronic sprains. Medially, the posterior tibialis inserts on the plantar aspect of the navicular cuneiforms and metatarsal bases, acting primarily to invert the foot and secondarily to plantarflex the foot. The flexor hallucis longus inserts on the base of the distal phalanx of the great toe to plantarflex the great toe, and the flexor digitorum inserts on the bases of the distal phalanges of the lesser four toes, acting to plantarflex the toes. The gastrocnemius inserts on the calcaneus as the Achilles tendon and plantarflexes the foot. Anteriorly, the tibialis anterior inserts on the dorsal medial cuneiform and plantar aspect of the first metatarsal base as the primary ankle dorsiflexor and secondary inverter. The Extensor hallucis longus and extensor digitorum longus insert on the dorsal aspect of the base of the distal phalanges to dorsiflex the great toe and lesser toes, respectively. This model was created from the file STS_023.

    Free

  3. Version 1.0.0

    1 download

    This model is the bilateral thigh skin rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. Myxoid fibrosarcoma (or myxoid MFH) is the most common subtype of MFH, at about 10%-20% of cases. Clinically, the tumor presents as a deep, slow-growing, painless mass. It is located more commonly in the lower extremities and retroperitoneum. Imaging on MRI demonstrates a mass with low signal intensity on T1-weighting imaging, and high signal intensity on T2-weighted imaging. On histology, a myxoid background is present with a storiform (or cartwheel) pattern seen on low-power imaging, seen in fibrosarcomas. A “myxoid background” is composed of a clear, mucoid substance. Treatment includes radiation, wide surgical resection, and chemotherapy in selected cases. However, the 5-year survival is 50%-60% depending on size, grade, depth and presence of metastasis. The term “malignant fibrous histiocytoma” was coined in the 1960s by Margaret R. Murray when histology a sarcoma demonstrated an appearance like histiocytes, with characteristics of phagocytosis and a pleomorphic pattern. With further research, this entity was identified to have a wider range of appearances with a fibrous characteristic. Today, these sarcomas are known as “pleomorphic sarcomas.” Recently, a change in the understanding of soft tissue tumors has purported that MFH is not a specific type of cancer, but a common morphologic pattern shared by unrelated tumors. One school of thought states that this morphologic pattern is shared by tumors as a common final pathway in cancer progression whereas another school of thought believes that true pleomorphic sarcomas are the result of a transformation from mesenchymal stem cells. Future research into understanding the pathway of these sarcomas and progression will help to target specific therapies and, hopefully, eventual cures. This model was created from the file STS_022.

    Free

  4. Version 1.0.0

    16 downloads

    This model is the left leg bone rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The leg includes the area between the knee and the ankle and houses the tibia and fibula. The proximal tibia includes the medial plateau (which is concave) and the lateral plateau (which is convex). The Proximal tibia has a 7-10 degree posterior slope. The tibial tuberosity is located on the anterior proximal tibia, which is where the patellar tendon attaches. On the anteromedial surface of the tibia is Gerdy's tubercle, where the sartorius, gracilis, and semitendinosus attach. The distal tibia creates the superior and medial (plafond and medial malleolus) of the ankle joint. The proximal fibula is the attachment for the posterolateral corner structures of the knee joint. The peroneal nerve wraps around the fibular neck. The distal fibula is the lateral malleolus and a common site for ankle fractures. The ankle is a hinge (or ginglymus) joint made of the distal tibia (tibial plafond, medial and posterior malleoli) superiorly and medially, the distal fibula (lateral malleolus) laterally and the talus inferiorly. Together, these structures form the ankle “mortise”, which refers to the bony arch. Normal range of motion is 20 degrees dorsiflexion and 50 degrees plantarflexion. Stability is provided by the anterior talofibular ligament (ATFL), calcaneofibular ligament (CFL), and posterior talofibular ligament (PTFL) laterally, and the superficial and deep deltoid ligaments medially. The ankle is one of my most common sites of musculoskeletal injury, including ankle fractures and ankle sprains, due to the ability of the joint to invert and evert. The most common ligament involved in the ATFL. The foot is commonly divided into three segments: hindfoot, midfoot, and forefoot. These sections are divided by the transverse tarsal joint (between the talus and calcaneus proximally and navicular and cuboid distally), and the tarsometatarsal joint (between the cuboids and cuneiforms proximally and the metatarsals distally). The first tarsometatarsal joint (medially) is termed the “Lisfranc” joint, and is the site of the Lisfranc injury seen primarily in athletic injuries. This model was created from the file STS_022.

    Free

×
×
  • Create New...