Jump to content

Search the Community

Showing results for tags '3d models'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Blogs

  • Embodi3d Test Blog
  • 3D Printing in Medicine
  • Cool Medical 3D-Printing
  • 3D Bio Printing by Paige Anne Carter
  • SSchoppert's Blog
  • Additive Manufacturing in Medicine
  • biomedical 3D printing
  • Bryce's Blog
  • Chris Leggett
  • 3D Models Help Improve Surgical Precision, Reduce Operating Time
  • Desktop 3D Printing in Medical Imaging
  • 3D Printing: Radiology corner
  • The Embodi3D.com Blog
  • descobar3d's Blog
  • 3D Printing in Anthropology
  • Learn to 3D Print: Basic Tools from software to printers
  • 3D printing for bio-medicine
  • 3D Biomedical Printing - by Jacob M.
  • Valchanov's Blog
  • Deirdre_Manion-Fischer's Blog
  • Matt Johnson's Biomedical 3D Printing Blog
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Mike at Medical Models
  • Best embodi3d.com Medical and Anatomic Files

Forums

  • Biomedical 3D Printing
    • Hardware and 3D Printers
    • democratiz3D®
    • Software
    • Clinical applications
    • 3D Printable Models
    • Medical Imaging: CT, MRI, US
    • Science and Research
    • News and Trending Topics
    • Education, Conferences, Meetings, Events
  • General
    • Announcements
    • Questions and Answers
    • Suggestions and Feedback
    • Member Lounge (members only)
  • Classifieds, Goods and Services
    • General Classifieds - members post free
    • Services needed
    • Services offered
    • Stuff for sale/needed
    • Post a Job
    • Looking for work - visible only to members

Categories

  • democratiz3D® Processing
  • Bones
    • Skull and Head
    • Dental, Orthodontic, Maxillofacial
    • Spine and Pelvis
    • Extremity, Upper (Arm)
    • Extremity, Lower (Leg)
    • Thorax and Ribs
    • Whole body
    • Skeletal tumors, fractures and bony pathology
  • Muscles
    • Head and neck muscles
    • Extremity, Lower (Leg) Muscles
    • Extremity, Upper (Arm) Muscles
    • Thorax and Ribs Muscles
    • Abdomen and Pelvis muscles
    • Whole body Muscles
    • Muscular tumors and sarcomas
  • Cardiac and Vascular
    • Heart
    • Congenital Heart Defects
    • Aorta
    • Mesenteric and abdominal arteries
    • Veins
  • Organs of the Body
    • Brain and nervous system
    • Kidneys
    • Lungs
    • Liver
    • Other organs
  • Skin
  • Veterinary
    • Dogs
    • Cats
    • Other
  • Science and Research
    • Paleontology
    • Anthropology
    • Misc Research
  • Miscellaneous
    • Formlabs
  • Medical CT Scan Files
    • Skull, Head, and Neck CTs
    • Dental, Orthodontic, Maxillofacial CTs
    • Thorax and Ribs CTs
    • Abdomen and Pelvis CTs
    • Extremity, Upper (Arm) CTs
    • Extremity, Lower (Leg) CTs
    • Spine CTs
    • Whole Body CTs
    • MRIs
    • Ultrasound
    • Veterinary/Animals
    • Other

Product Groups

  • Premium Services
  • Physical Print Quotes

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Name


Secondary Email Address


Interests

Found 6 results

  1. Any specific requests? I'm trying to decide what type of anatomical model members are most in need of.
  2. Version 1.0.0

    39 downloads

    This is the normal left knee bone model of a 56 year old male with right anterior thigh pleomorphic leiomyosarcoma. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The knee is composed of 3 separate joints: two hinge joints (medial and lateral femorotibial joints), and one sellar, or gliding, joint (the patellofemoral joint). These also compose the three compartments of the knee: medial, lateral, and patellofemoral. Although the knee is thought of as a hinge joint, it actually has 6 degrees of motion: extension/flexion, internal/external rotation, varus/valgus, anterior/posterior translation, medial/lateral translation, and compression/distraction. In order to provide stability to this inherently unstable knee, static and dynamic stabilizers surround the knee, including muscles and ligaments. The proximal tibia includes the medial plateau (which is concave) and the lateral plateau (which is convex). The Proximal tibia has a 7-10 degree posterior slope. The tibial tuberosity is located on the anterior proximal tibia, which is where the patellar tendon attaches. On the anteromedial surface of the tibia is Gerdy's tubercle, where the sartorius, gracilis, and semitendinosus attach. The proximal fibula is the attachment for the posterolateral corner structures of the knee joint. The peroneal nerve wraps around the fibular neck. This model was created from the file STS_014.

    Free

  3. Version 1.0.0

    4 downloads

    This is the normal right leg bone model (including foot) of a 56 year old male with right anterior thigh pleomorphic leiomyosarcoma. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The leg includes the area between the knee and the ankle and houses the tibia and fibula. The proximal tibia includes the medial plateau (which is concave) and the lateral plateau (which is convex). The Proximal tibia has a 7-10 degree posterior slope. The tibial tuberosity is located on the anterior proximal tibia, which is where the patellar tendon attaches. On the anteromedial surface of the tibia is Gerdy's tubercle, where the sartorius, gracilis, and semitendinosus attach. The distal tibia creates the superior and medial (plafond and medial malleolus) of the ankle joint. The proximal fibula is the attachment for the posterolateral corner structures of the knee joint. The peroneal nerve wraps around the fibular neck. The distal fibula is the lateral malleolus and a common site for ankle fractures. This model was created from the file STS_014.

    Free

  4. Version 1.0.0

    1 download

    This model is the bilateral thigh skin rendering of a 56 year old male with a pleomorphic leiomyosarcoma of the anterior compartment of the right thigh. The patient underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy treatment and was found to have an intermediate grade lesion at the time of diagnosis. However, the tumor metastasized to his lungs, and the patient died 2.5 years after diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. Leiomyosarcomas are aggressive soft tissue malignancies that are thought to arise from the smooth muscle cells lining small blood vessels. Pleomorphism is the pathologic description of cells and nuclei with variability in size, shape and staining, which is characteristic of a malignant neoplasm. Pleomorphic leiomyosarcoma is an aggressive form of leiomyosarcoma, accounting for approximately 10% of these tumors. The mean age of occurrence is 58 years old, with a range from 31-89 years. These usually occur in the extremities, but may also present in the retroperitoneum/abdominal cavity, chest/abdominal wall, and, occasionally, the scalp. On biopsy, the definition of pleomorphic leiomyosarcoma is the presence of pleomorphic cells in at last two-thirds of the cut section and at least one section of positive staining for smooth muscle. Treatment is early wide resection of the primary lesion and neo-adjuvant or adjuvant chemotherapy and radiation. Tumors may metastasize to the lung. A large primary tumor and presence in the retroperitoneal cavity are poor predictive factors, and about 65% of patients succumb to the disease. This model was created from the file STS_014.

    Free

  5. This week cdmalcolm posted a great article here at Embodi3d.com on how 3D-printed replicas of patient’s organs are helping surgeons plan for complicated operations. Today I'd like to supplement this topic by talking about the advances 3D printing can bring to medical education, specifically by recreating human models for students to study and dissect. Currently, the golden standard for teaching medical students the anatomy (overall structure) of the human body involves dissecting and observing cadavers – recently deceased humans who have given their bodies to science. However, obtaining and storing these bodies can be difficult for a number of reasons. For example, many cultural and religious beliefs preclude people from donating their bodies, and even in countries with strong donation programs bodies with rare diseases (by their very definition) are hard to find. Even when sufficient cadavers are donated, the process of preserving them to prevent natural decomposition can be costly. New technology comprising a mixed approach of 3D printing and traditional manufacturing can solve many of these problems by recreating accurate and numerous replicas of human anatomy with minimal expense. A recent publication in the January/Februrary edition of the journal “Anatomical Sciences Education” highlighted a prototype for this technology; the team from The University College Dublin in Ireland were able to recreate a portion of the hip, with 3D-printed bone and blood vessels surrounded by a flesh-like filler and covered in a synthetic skin. On top of this, they were able to connect a pump to the blood vessels to mimic the typical human circulatory system. The result wasn't fancy - the components were placed in a Tupperware container with holes for the tubing - but it had most of the necessary components for students to learn, and more importantly, obtain valuable practical experience. The advantage of using 3D printing for these models is that they can be changed to reflect the anatomy of specific diseases. For example, atherosclerosis occurs when blood vessels narrow, and it is an important factor in heart disease. In the prototype above, the team were able to 3D-print replicas of blood vessels from a healthy patient, and one with atherosclerosis - the vessels with atherosclerosis were a lot thicker, and students were able to assess this using ultrasound. The students were also able to perform basic techniques to locate the vessels via syringe, similar to how they may be required to set up an IV drip. And since the models only need to mimic the qualities of human organs rather than making functional tissue (see my previous article on the challenges of this), the models can be made relatively simply, and from materials that do not degrade over time like human flesh does. It might seem like a reconstruction of the human body would never be able to replicate the experience of learning from a true human body, however the results of the study above and previous work by The Centre for Human Anatomy Education in Australia showed that 3D printed models are just as good as cadavers for teaching students the principles of anatomy. And thus the future of manufactured lifelike bodies for teaching seems bright - indeed, one could imagine that many trending technologies could be integrated with these models to provide teaching experiences that surpass the current standard delivered by cadavers. Digital sensors are rapidly becoming cheaper and more ubiquitous in technology, and these could be incorporated into anatomical models to provide feedback to students during practical tasks. Virtual reality (VR) and augmented reality (AR) are also trending with many potential application for medicine. Perhaps in the future, manufactured human anatomical models will be integrated with AR, in a way that replicates the experience of operating on real-life patients. And so, 3D printing technology seems poised to replace the long-standing use of cadavers for medical education, and soon many medical students will be able to sigh with relief at not having to prepare themselves to touch and dissect decomposing, smelly bodies. The inexpensive production of realistic bodies will give students better access to practical hands-on education, better preparing them for their eventual roles dealing with real patients. Image Credits: Simulab The Verge Pacific Vascular
  6. A lot of remarkable applications of 3D printing are discovered each day, and one of the latest innovations were used by Chinese surgeons to conduct a delicate spinal surgery. Doctors from the Orthopaedic Hospital in Zhengzhou China treated a 28-year old patient suffering from a condition called atlantoaxial dislocation which causes the nerves near the end of her spinal cord to compress which leads to the inability of movement and lack of feeling on her extremities. As the spinal cord is considered as the most delicate areas to operate on, a small mistake made by the surgeons could be catastrophic towards the patient. The patient can become quadriplegic (inability to move both hands and legs) or the patient may succumb to death in the middle of the operation. However, the doctors ensured that the patient is in great hands by practicing first on a spinal model of the patient’s actual spine. Using the images obtained from the X-ray and CT scan data, the surgeons were able to print an accurate 3D model of the patient’s spine. This allowed the surgeons to practice on freeing the soft tissue from the affected area, reset the dislocation and also screw everything back without damaging the patient’s spinal cord. Doctors were successful in conducting the surgery and the patient is reported to be recovering with significant improvement a few months after the operation. Thanks to 3D printing, surgeons are now able to perform difficult surgical procedures without putting their patient’s lives at risk. Hopefully, 3D printing will be used to create surgical models to treat diseases that are difficult to operate on.
×
×
  • Create New...