Jump to content

Search the Community

Showing results for tags '3D Printing'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Blogs

  • Embodi3d Test Blog
  • 3D Printing in Medicine
  • Cool Medical 3D-Printing
  • 3D Bio Printing by Paige Anne Carter
  • SSchoppert's Blog
  • Additive Manufacturing in Medicine
  • biomedical 3D printing
  • Bryce's Blog
  • Chris Leggett
  • 3D Models Help Improve Surgical Precision, Reduce Operating Time
  • Desktop 3D Printing in Medical Imaging
  • 3D Printing: Radiology corner
  • The Embodi3D.com Blog
  • descobar3d's Blog
  • 3D Printing in Anthropology
  • Learn to 3D Print: Basic Tools from software to printers
  • 3D printing for bio-medicine
  • Valchanov's Blog
  • Deirdre_Manion-Fischer's Blog
  • Matt Johnson's Biomedical 3D Printing Blog
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Mike at Medical Models
  • Best embodi3d.com Medical and Anatomic Files

Forums

  • Biomedical 3D Printing
    • Medical 3D Printing
    • Hardware and 3D Printers
    • Software
    • democratiz3D® Support
    • 3D Printable Models
  • General
    • Classifieds, Goods & Services
    • Member Lounge (members only)
    • Announcements

Categories

  • democratiz3D® Processing
  • COVID-19
  • Bones
    • Skull and Face
    • Dental, Orthodontic, Maxillofacial
    • Spine and Pelvis
    • Extremity, Upper (Arm)
    • Extremity, Lower (Leg)
    • Thorax and Ribs
    • Whole body
    • Skeletal tumors, fractures and bony pathology
  • Muscles
    • Head and neck muscles
    • Extremity, Lower (Leg) Muscles
    • Extremity, Upper (Arm) Muscles
    • Thorax and Ribs Muscles
    • Abdomen and Pelvis muscles
    • Whole body Muscles
    • Muscular tumors and sarcomas
  • Cardiac and Vascular
    • Heart
    • Congenital Heart Defects
    • Aorta
    • Head and Neck
    • Chest and abdomen
    • Extremity
    • Miscellaneous
  • Organs
    • Brain
    • Kidneys
    • Lungs
    • Liver
    • Other organs
  • Skin
  • Veterinary
    • Dogs
    • Cats
    • Other
  • Science and Research
    • Paleontology
    • Anthropology
    • Misc Research
  • Miscellaneous
    • Formlabs
    • Anatomical Art
    • Tutorials
    • Other
  • Medical Scans
    • Skull, Head, and Neck CTs
    • Dental, Orthodontic, Maxillofacial CTs
    • Thorax CTs
    • Abdomen and Pelvis CTs
    • Upper Extremity CTs
    • Lower Extremity CTs
    • Spine CTs
    • Whole Body CTs
    • MRIs
    • Ultrasound, General
    • Ultrasound, Fetal
    • Veterinary scans
    • Other

Product Groups

  • Products
  • Premium Services
  • Physical Print Quotes

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Name


Secondary Email Address


Interests

  1. Embodi3D member tserhardt has uploaded an outstanding tutorial on using the Grayscale Model Maker module in the free software program 3D slicer to create 3D printable anatomic models. Read her tutorial here. Thanks for sharing with the community!
  2. Version 2.0

    1,020 downloads

    Anatomically accurate full-size human lumbar vertebra created from a real CT scan. File in Collada format. bone, 3d, printing, ct, scan, vertebra, lumbar, transverse, spinous, process, body, 3d, model, printable, spine, laminae, facet, pedicle, See the video here: Copyright 2013 Embodi3d
    Free
  3. Version 1.0.0

    140 downloads

    I generated this model for cardiosurgical training simulator. I used the Obelix dataset from the Osirix dicom library. Those are the the raw 3d models of the thorax and the heart. I used those to add two mini invasive accesses to the right and a table for pig hearts in the mediastinum with the shape of the diaphragmatic of the heart. I took 2 kg. of PLA and more than 200 hours of print, sliced into 10 separate pieces and glued with cyanacrilate glue. It's quite resilient, the floating ribs are quite breakable and I don't recommend to print them. I'm adding here the raw files, because I don't know what kind of access you need on the thorax. The printed thorax can be covered with vinyl or leather for extra realism. anatomy, thorax, 3d, printing, simulator, chest, .stl, 3d, model, printable, ribs, sternum, cartilage, dorsal, spine, transverse, body, intervertebral, disc, bone, ventricle, auricle, mediastinum
    Free
  4. UPDATED TUTORIAL: A Ridiculously Easily Way to Convert CT Scans to 3D Printable Bone STL Models for Free in Minutes Hello, it's Dr. Mike here again with another tutorial and video on medical 3D printing. In this tutorial we're going to learn how to take a DICOM-based medical imaging scan, such as a CT scan, and convert into an STL file in preparation for 3D printing. We will use the free, open-source software program Osirix to do this. Once the file is converted into STL format, we will use the free software packages Blender and Meshmixer to prepare the file for 3D bioprinting. If mastered, this material should easily allow you to make a high-quality 3D printed medical model in less than 30 minutes using free software. Expensive, proprietary software is not needed. This tutorial is designed primarily for Macintosh users since Osirix is a Macintosh-only program. If you use Windows or Linux, please stay tuned for my upcoming tutorial on using free, open-source 3D Slicer to create medical and anatomic models. If you haven't already done so, please see my tutorial on selecting the best medical scan to create a 3D printed model. If you start your 3D printed model project with the wrong kind of scan, your model will not turn out well. Selecting the right kind of scan is critically important and will save you a lot of frustration. Take a few minutes to look over this brief tutorial. It will be well worth your time. Before you start, DOWNLOAD THE FILE PACK that accompanies this video so you can follow along on your own computer. When you finish the tutorial, you will have your very own 3D printable skull STL file. Download is free for members, and registration for membership is also free and only takes a minute. Video 1: The video version of this tutorial. It takes you from start to finish in 30 minutes. The written version here has more detail though. A Few Brief Definitions What is Osirix? Osirix is a Macintosh-only software package for reading medical imaging scans (Figure 1). There are several versions. There is an FDA-approved version designed for doctors reading scans in clinics and hospitals, a 64-bit version for research and other nonclinical activities, and a free, 32-bit version. The main difference between the free 32-bit version and the paid 64-bit version is the 64-bit version can open very large imaging studies, such as MRI exams with thousands of images. The 32-bit version is limited to about 500 images. Additionally, there is a performance boost with the paid versions. If you are just getting into 3D bioprinting, the free, 32-bit version is a great place to start. It can be downloaded at the Osirix website here. Figure 1: An example of Osirix being used to read a CT scan. What is DICOM? DICOM stands for Digital Imaging and Communications in Medicine. It is the standard file format for most medical imaging scans, such as Computed Tomography (CT), Magnetic Residence Imaging (MRI), ultrasound, and x-ray imaging studies. What is STL? STL, or STereoLithography format , is an engineering file format created by 3D Systems for use with Computer Aided Design software (CAD). The file format is primarily used in engineering, and has become the standard file format for 3D printing. The Problem with 3D Printing Anatomic Structures The major problem with trying to 3D print anatomic structures from medical scans is that the medical scan data is in DICOM format and 3D printers require files in STL format. The two formats are incompatible. There are very expensive, proprietary software packages that can perform the conversion between DICOM and STL. A little-known secret is that this can also be done using free, open-source software. Osirix is the best solution for Macintosh. 3D Slicer is the best solution for Windows and Linux. I will discuss 3D Slicer in an upcoming tutorial. If you haven't already, please download the DICOM data set we will be using in this tutorial. This data set is from a high quality CT scan of the brain and skull. It has been anonymized and has been put in the public domain for research by the US National Cancer Institute. Also included with the download packet are other files we will use for this tutorial, including the final STL file of the skull. The download is free for members, and registration for membership is also free and only takes a minute. From the Macintosh Finder navigate to the folder with the downloaded tutorial file pack and double-click on the file TCGA-06-5410 sharp.zip. Opening the CT scan with Osirix Open Osirix. From the File menu, click Import, Import Files. Click Open. (Figure 2) Figure 2: Importing the CT scan into Osirix Navigate to the folder that contains your DICOM data set. Click the Open button. Osirix will ask you if you want to copy the DICOM files into the Osirix database, or only copy the links to these files. Click "Copy Files." Osirix will begin to copy the files into the database. A progress bar will be shown on the lower left-hand corner. When the data is imported you'll see a small orange circle with a "+" in it. This orange circle will eventually go away when Osirix is finished analyzing the study, but you can open the study and work with it while Osirix does some cleanup postprocessing. Left click on the study. You will see an icon with a label "FIDUCIALS 1.0 SPO cor, 216 Images." This is a CT scan of the head with coronal slices at 1 mm intervals. Double-click on this icon, Figure 3. Figure 3: The study when opened Osirix will remind you that you're not supposed to be using it for diagnostic scan reading on real patients unless you are using the more expensive FDA approved version, Osirix MD we're just using it to create a 3D model, so click "I agree." At this point, the study will load. Use the mouse wheel or the bar on the top of the screen to scroll. You can see that this is a pretty decent CT scan of the head for 3D printing. There is not much artifact from metallic dental implants because the maxilla and mandible have been cut off. Segmenting the bony skull and creating a new series We can measure the density of the bony structures using the Region Of Interest or ROI tool. This measures the Hounsfield density, or CT density, of the target area. Select the oval tool from the drop-down menu, Figure 4. Figure 4: The ROI tool. Choose a region of bone using the oval tool. You will see that information about this region is displayed. What we are interested in is the mean density, which in this case is 1753.194, Figure 5. Figure 5: Density measurement using ROI tool. The mean density is 1753.194, as shown in maroon field. Use the ROI tool to select another region in the brain. You will see that the mean attenuation, or density, is much less, in this case 1059.137, Figure 6. Figure 6: Density measurement of the brain tissue. Finally, use the oval tool to choose an area in the air adjacent to the head. You can see that the mean attenuation of this region is 38.514, Figure 7. Figure 7: Density measurement of air. In this scan the Hounsfield attenuation numbers have been shifted. In a typical scan, air measures about -1000, soft tissue between 30 and 70, and bone typically greater than 300. In this scan those numbers have been increased by 1000. Since we were thorough enough to check the Hounsfield attenuation before moving on, we can easily correct for this shift. Under ROI menu select Grow Region 2D/3D Segmentation, Figure 8. Figure 8: The Grow Region tool In the Segmentation Parameters window that pops up, set the following: Lower Threshold 1150 Upper Threshold 3000. Generate a new series with: Inside pixels 1000 Outside pixels 0 Be sure to check the checkbox next to the Set Inside Pixels, and Set Outside Pixels fields, Figure 9. Figure 9: Setting up the Segmentation Parameters window. Next, make sure you select a starting point for the algorithm. Left click on one of the skull bones. Green crosshairs will show. All of the bone that is contiguous with point you clicked will now be highlighted in green, Figure 10. Figure 10: Setting the starting point for segmentation. The target region turns green. Click the Compute button Osirix will generate a new series with the bones being a single white color with a value of 1000, and everything else being a black color with a value of zero, Figure 11. Creating a separate series just for 3D printing purposes is the secret to getting good 3D models from Osirix. Trying to generate a 3D surface model directly from the 3D Surface Rendering function underneath the 3D Viewer menu is tempting to use, however it will not work well for generating STL files. This is not obvious, and the source of much frustration for beginners trying to use Osirix for 3D printing. Figure 11: The new bitmapped series shown on right of screen. This series has only two colors, black and white. It is idea for conversion to and STL surface model. Generating an STL file from the new bitmapped series Now we are ready to create our 3D surface model. Make sure that your new bitmapped series is highlighted. Click on the 3D viewer menu and select 3D Surface Rendering, Figure 12. Leave the settings set to their default values. Click OK as shown in Figure 13. Figure 12: Selecting 3D Surface Rendering Figure 13: Setting 3D surface rendering settings Osirix will then think for a few moments as it prepares the surface. You can see that a relatively good approximation of the skull has been generated. Use of the left mouse button to rotate the 3D model. Next were going to export the 3D surface model to an STL file. Click Export 3D-SR and choose Export as STL as show in Figure 14. Type the file name "skull file." Click Save. Figure 14: Exporting model to STL file format. Cleaning up the 3D model in Blender You can see from the 3D rendering that there are many small islands of material that have been included with the STL file. Also, the skull has a very pixelated appearance. It does not have the smooth surface that would be expected on a real skull. In order to fix these problems, we're going to do a little postprocessing in Blender, a free open-source 3D software program. If you don't already have Blender on your computer, you can download it free from blender.org. Blender is available for Windows, Macintosh, and Linux. Select your operating system, preferred installation method, and download mirror. Once Blender is installed on your computer, open it. In the default scene there will be a cube. We don't need this. Right click on the cube to select it. Then delete it using the delete key on a full keyboard or the X key on a laptop keyboard. Blender will ask you to confirm you want to delete the object. Click Delete as shown in Figure 15. Figure 15: Deleting the default cube. Next, we are going to import the skull STL file. From the File menu select Import, STL, as shown in Figure 16. Navigate to the skull STL file you saved from Osirix, and double-click it. Blender will think for a few seconds and then return to what appears to be an empty scene, as shown in Figure 17. Where is your skull? To find your skull, use the mouse scroll wheel to zoom out. If you zoom out far enough you will see the skull. The skull appears to be gigantic, as shown in Figure 18. This is because the default unit of measurement in the skull is 1 mm. In Blender, an arbitrary unit of measurement called a "blender unit" is used. When the skull was imported, 1 mm of real size was translated into 1 blender unit. Thus the skull appears to be hundreds of blender units large, and appears very big. Figure 16: Importing the STL file into Blender Figure 17: The "empty" scene. Where is the skull? Figure 18: Zoom out and the skull appears! The skull is also offset from the origin. We are going to correct that. Make sure that the skull is still selected by right clicking on it. If it is selected it will have a orange halo. In the lower left corner of the window click on the Object menu. Select Transform, Geometry to Origin as shown in Figure 19. The skull is now centered on the middle of the scene. Figure 19: Centering the skull in the scene. Deleting Unwanted Mesh Islands First, let's get rid of the extra mesh islands. There is a menu in the lower left-hand corner of the window that says Object Mode. Click on this and go to Edit Mode, as shown in Figure 20. Figure 20: Entering Edit mode in Blender. Now we are in Edit Mode. In this mode we can edit individual edges and vertices of the model. Right now the entire model is selected because everything is orange. In edit mode you can select vertices, edges, or faces. This is controlled by the small panel of buttons on the bottom toolbar. Make sure that the leftmost or vertex selection mode is highlighted and then right click on a single vertex on the model, as shown in Figure 21. That vertex should become orange and everything else should become gray, because only that single vertex is now selected, Figure 22. Figure 21: Vertex selection mode Figure 22: Select a single vertex by right clicking on it. Under the Select menu, click Linked, as shown in Figure 23. Alternatively, you can hit Control-L. This selects every vertex that is connected to the initial vertex you selected. All the parts of the model that are contiguous with that first selection are now highlighted in orange. You can see that the many mesh islands we wish to get rid of are not selected. Figure 23: Selecting all linked vertices. We are next going to invert the selection. Do this by again clicking on the Select menu and choosing Inverse, Figure 24. Alternatively, you can hit Control-I. Now, instead of the skull being selected, all of the unwanted mesh islands are selected, as shown in Figure 25. Now we can delete them. Hit the delete key, or alternatively the X key. Blender asks you what you want to delete. Click Vertices, Figure 26. Now all of those unwanted mesh islands have been deleted. Figure 24: Inverting the selection. Figure 25: The result after inverting the selection. Only the unwanted mesh islands are selected! Figure 26: Deleting the unwanted mesh islands. Repairing Open Mesh Holes We can see that on the top of the skull there is a large hole where the skull was cut off by the scanner. Because the bone surface was cut off, Osirix left a gaping defect, Figure 27. Before 3D printing, this will have to be corrected. This is what is called a manifold mesh defect. It is an area where the surface of the model is not intact. A 3D printer will not know what to do with this, such as whether it should be filled in or left hollow. Fortunately, it is relatively easy to correct. Figure 27: A large open mesh hole at the top of the skull. Using the Select menu in the lower left-hand corner, click on Non-Manifold. This will select all of the non-manifold mesh defects in your model. You can see that the edge of our large hole at the top of the skull has been selected and turned orange. This confirms that this defect has to be fixed. Unselect by hitting the A key. Then, go to Edge select mode by clicking on the Edge Select button along the lower toolbar. Holding down the Alt key, right-click on one of the edges of the target defect, in this case the top of the skull. That familiar orange ring has formed. Your selection should look like Figure 28. Let's fill in this hole by creating a new face. Hit the F key. This creates a new face to close this hole, Figure 29. Figure 28: The edge of the hole is selected, as indicated by the orange color. Figure 29: The hole when filled with a new face. Due to the innumerable polygons along the edges, the face is actually quite a complex polygon itself. Let's convert it to a simpler geometry. With the face still selected hit Control T. You can alternatively go to the Mesh menu and select Faces, Triangulate Faces as shown in Figure 30. This will convert the complicated face into simpler triangles. As you can see, some of these triangles are quite large relative to the other triangles along the skull surface. These large triangles may become apparent when smoothing algorithms are applied or 3D printing is performed. Let's reduce their size. Hit the W key and then select Subdivide Smooth, as shown in Figure 31. The triangles are now subdivided. Let's repeat that operation again so that they are even smaller. Hit the W key and again select Subdivide Smooth. Figure 30: Converting all faces into triangles. ] Figure 31: Subdividing and smoothing the selected faces. Smoothing the Model Surface Next let's get rid of that pixelated appearance of the model surface. First, we need to convert all of the polygons in the model to triangles. The smoothing algorithms just work better with triangles. Staying in Edit mode, hit the A key. The A key toggles between selecting all and unselecting all. If you need to, hit the A key a second time until the entire model is orange, thus indicating that it is selected. Hit Control-T, or alternatively use the Mesh menu, Faces, Trangulate Faces. This will convert any remaining complex polygons to triangles. Go back to Object mode by hitting the tab button or selecting Object Mode from the bottom toolbar. We are now going to apply a smoothing function, called a modifier, to the skull. Along the right of the screen you'll see a series of icons, one of which is a wrench, as shown in Figure 32. Click on that. This brings up the modifier panel, a series of tools that Blender uses to manipulate digital objects. Click on the Add Modifier button and select the Smooth modifier. Do not select the Laplacian Smooth modifier. That is different. We just want the regular Smooth modifier, as shown in Figure 33. Leaving the Factor value at 0.5, increase the Repeat factor until you are satisfied with the surface appearance of your model. For me, a factor of 20 seemed to work, Figure 34. At this point the modifier is only temporary, and has not been applied to the model. Click on the Apply button. Now the smoothing function has been applied to the model. Figure 32: The Modifiers toolbar on the right. Figure 33: The Smooth modifier Figure 34: Setting the Smooth modifier to repeat 20 times. Rotating and Adjusting the Model Orientation When the model was originally exported from Osirix and opened in Blender, it was at a strange orientation. We can correct to this easily. Click on the View menu from the left portion of the lower now bar and select Front. This orients the model from the frontal view, and you can see that in this orientation we are looking at the top of the skull. To correct this, we will rotate the model along the X axis. First, make sure that the cursor is inside the model window. Then, Hit the R key and then the X key, and type "180." This will rotate the model on the X axis by 180°. Hit the return key to confirm the modification. Don't worry if the skull isn't facing the correct way right now, we will fix that later. Now we are ready to export our cleaned up skull model. Go to the File menu, click Export, STL. Navigate to your desired folder and save your STL file. Since I corrected several defects in this mesh file, I called the file "skull file corrected.stl" Performing a Final Inspection Using Meshmixer If you haven't already done so, go to the Autodesk Meshmixer website at http://www.meshmixer.com/download.html and download and install Meshmixer. The software is free. Once installed open the program and select Import. Navigate to your STL file and double-click it. Meshmixer has a variety of nice features, and one of them is a mesh correction function. Once your file is open click on the Analysis button along the left nav bar. Click on Inspector as shown in Figure 35. Meshmixer will now analyze the STL file for obvious mesh defects. Anything that is detected will be highlighted by red, pink, or blue lines. You can see that our skull model appears to be defect free. Click on the done button and quit Meshmixer. Figure 35: Running the inspector tool in MeshMixer Your STL file of the skull is now ready for 3D printing! Conclusion In this tutorial you have learned how to take a DICOM data set from a CT scan and use it to create a 3D printable STL file using free software. First we used the Osirix to segment a CT scan and convert it to an STL file. Then we performed cleanup operations on the STL file using the Blender and Meshmixer, both free programs. For additional information on how to select an appropriate CT or MRI scan for 3D printing please see my previous tutorial. If you want to learn more about using Blender to fix more extensive defects in bone models, you can view to other tutorials I have created: 3D Printing of Bones from CT Scans: A Tutorial on Quickly Correcting Extensive Mesh Errors using Blender and MeshMixer Preparing CT Scans for 3D Printing. Cleaning and Repairing STL Files from Bones using Blender, an advanced tutorial A variety of useful tutorials for 3D printing is available on the Tutorials page. If you are planning on attending the 2015 Radiological Society of North America (RSNA) meeting in Chicago this November, look for my hands-on course "3D Printing and 3D Modeling with Free and Open-Source Software." I will give more tips and tricks for creating great 3D printed medical models using freeware. I hope you find this tutorial helpful in creating your own medical and anatomic models for 3D printing. Please stay tuned for my next tutorial on using the free, open-source program 3D Slicer to create medical 3D models on Windows and Linux platforms. If you are creating your own 3D printed medical models, please share your models with the Embodi3D community in the File Vault. If you have questions or comments, please leave a comment below or start a discussion thread in the Forums. Sample free downloads A Collection of Free Downloadable STL Skulls for you to 3D print yourself. 3D printable human heart in stackable slices, shows amazing internal anatomy. A Collection of Spine STL files to download and 3D print. Follow Embodi3D on social media Twitter | Facebook | LinkedIn | YouTube | Google+
  5. 1,016 downloads

    -> IMPROVED VERSION OF THIS FILE IS AVAILABLE HERE <-- This 3D printable model of a human heart was generated from a contrast enhanced CT scan. The model comes in 4 slices, and demonstrates the detailed anatomy of the human heart in exquisite detail. Each slice stacks on top of the prior slice to form a complete human heart. Individual slices show the detailed cardiac anatomy of the right and left ventricles, and right and left atria, and outflow tracts. Perfect for educational purposes. Download this model for free and 3D print the model yourself! If you find this and other free medical models available for download on Embodi3d.com useful, please give back to the community by uploading and sharing a medical model of your design.
    $19.99
  6. Version 1.0.0

    2 downloads

    machine part - stl file processed Have embodi3D 3D print this model for you. This file was created with democratiz3D. Automatically create 3D printable models from CT scans. 3d, printing, machine, phantom, .stl, example, phantom,
    Free
  7. Version 1.0.0

    2 downloads

    machine part - stl file processed Have embodi3D 3D print this model for you. This file was created with democratiz3D. Automatically create 3D printable models from CT scans. 3d, printing, machine, phantom, .stl, example, phantom,
    Free
  8. Version 1.0.0

    1 download

    Machine prt - stl file processed Have embodi3D 3D print this model for you. This file was created with democratiz3D. Automatically create 3D printable models from CT scans. 3d, printing, machine, phantom, .stl, example, phantom,
    Free
  9. I receive a lot of inquiries to my account. I'm going to try to share them with the community in the hope that any information that is shared can help many others. A member recently contacted me and asked the following: "Do you have any experience in dicom images by TUI mode in Voluson E10, for print 3d fetus models" Unfortunately, I don't personally have experience with 3D printing ultrasound images. I'm not sure how the slice-by-slice registration will work as ultrasound images are not in fixed orthographic planes. However, I know it must be possible since there is a company that is 3D printing fetuses. http://www.3ders.org/articles/20160118-3d-printed-fetuses-the-hottest-parenting-trend-of-2016.html Anyone in the community have experience with converting ultrasound to STL?
  10. Version 1.0.0

    7 downloads

    This kidney model is derived from a hgih resolution CT scan of the abdomen and captures the renal cortex, renal columns, aorta and renal arteries. The model consists of a single STL file with ~500k triangles.
    $2.99
  11. Version 1.0.0

    1 download

    This spinal cord model includes 5 layers of the cord: Main cord Separate grey Matter - The grey matter has accurately changing cross-section along the length of the spine Dura Mater Arachnoid Mater Pia Mater These layers are included as a single model as well as separated into Cervical, Thoracic and Lumbar + Sacral sections The spinal cord fits with the vertebrae of the full spine model available here The STLs included are of excellent quality and are suitable for 3D printing
    $25
  12. A member recently messaged me with a question about a brain she printed from this file. I as posting the response here in the hope that it will help others in the community. QUESTION "I came across your 3D printable human brain model and was able to successfully print it. Thank you for sharing it! Now I need to post-process it and am wondering if you can explain how you post-processed your print? I have never done the post-processing before and am not sure the best approach to take. I have attached a picture of our printed brain for your reference. Thank you in advance for insight you can offer!" RESPONSE: Based on the picture you attached, it looks like you used a single extruder printer and printed both the supports and model in the same material, presumably PLA. You need to tear off the supports using pliers. This can be a time-consuming job as getting in every nook and cranny can be difficult. If you find the supports are stuck to much to the model, you may have to adjust some of the settings in your slicer software to compensate. There may be a rough surface where the supports touch the model that you can sand off. If you have a dual extrusion printer, you can print the supports using a water soluble material such as PVA, which makes the supports easy to remove by soaking in water. Dual extruders can be finicky and you will likely have to spend a lot of time trying out different settings to get the supports to work just right, including calibrating the XY offset of the second extruder, determining optimal print temperature for the PLA and support to work together, overhang speed, support infill percentage, etc. This process is very time consuming but gratifying once you get your printer dialed in. If you don't want to deal with the headache, embodi3D has a 3D printing service and can print and ship to you. Hope this helps. Dr. Mike
  13. Version 1.0.0

    11 downloads

    This model of the rib cage was derived from a high resolution CT scan of the thorax. It includes all rib bones, associated vertebrae, the sternum and cartilage. The model is a high quality and high resolution STL file and is suitable for 3D printing. It demonstrates the detailed anatomy of the rib cage and is ideal for educational purposes, as medical reference or as a gift for medical professionals. Mesh integrity: manifold STL (watertight) Triangles: ~2M total To scale dimensions: 290 x 132 x 350 mm Additional supports may be needed to print the model
    $6.99
  14. Version 1.0.0

    18 downloads

    This model includes 3 STL files for the left and right Ilium and Sacrum segmented from high resolution CT data. No. of triangles = 124,000 total Manifold STL files
    $4.99
  15. Version 1.0.0

    2 downloads

    4 part model of the complete human leg including the femur, tibia, fibula and patella derived from a high resolution CT scan. STL files are manifold and high quality totalling 563,000 triangles. The model demonstrates the detailed anatomy of the leg and is ideal for educational purposes, as medical reference or as a gift for medical professionals. Number of parts: 4 Mesh integrity: manifold STL (watertight) Triangles: 563k total To scale dimensions: 194 x 116 x 781 mm Additional supports may be needed to print the various components
    $4.99
  16. In this brief tutorial we will go over how to use Meshmixer to create a hollow shell from a medical 3D printable STL file. Hollowing out the shell, as shown in the pictures below, can allow you to 3D print the model using much less material that printing a solid piece. The print will take less time and cost less money. For this tutorial we will use a head that we created from a real medical CT scan in a prior tutorial, " Easily Create 3D Printable Muscle and Skin STL Files from Medical CT Scans" If you haven't seen the prior tutorial, please check it out. To follow along with the tutorial, please download the accompanying file. This will enable you to replicate the process exactly as it is shown in the tutorial. >> DOWNLOAD THE TUTORIAL FILE NOW <<
  17. Hello all, I have initially uploaded a few very high quality models that I had produced from a small collection of high resolution CT scans I have. They are all in manifold STL format. Here are some screenshots of a full spine model, high resolution ear, pelvis, and full heart lumen model which I have attempted to convert into an assembly/display model with a base: My personal usage for these models has been for computer simulations, so I'm not too familiar with the requirements for a good 3D printable model. - Is it typically a requirement to have latticed internal volumes to reduce material costs? - What about dowels/pins so that the model can be assembled? Do people usually want this? - Are there any other considerations that would make these models more valuable to the community - I potentially have a few more anatomies that could be of value. Many thanks.
  18. Please note the democratiz3D service was previously named "Imag3D" In this tutorial you will learn how to quickly and easily make 3D printable bone models from medical CT scans using the free online service democratiz3D®. The method described here requires no prior knowledge of medical imaging or 3D printing software. Creation of your first model can be completed in as little as 10 minutes. You can download the files used in this tutorial by clicking on this link. You must have a free Embodi3D member account to do so. If you don't have an account, registration is free and takes a minute. It is worth the time to register so you can follow along with the tutorial and use the democratiz3D service. >> DOWNLOAD TUTORIAL FILES AND FOLLOW ALONG << Both video and written tutorials are included in this page. Before we start you'll need to have a copy of a CT scan. If you are interested in 3D printing your own CT scan, you can go to the radiology department of the hospital or clinic that did the scan and ask for the scan to be put on a CD or DVD for you. Figures 1 and 2 show the radiology department at my hospital, called Image Management, and the CDs that they give out. Most radiology departments will have you sign a written release and give you a CD or DVD for free or with a small processing fee. If you are a doctor or other healthcare provider and want to 3D print a model for a patient, the radiology department can also help you. There are multiple online repositories of anonymized CT scans for research that are also available. Figure 1: The radiology department window at my hospital. Figure 2: An example of what a DVD containing a CT scan looks like. This looks like a standard CD or DVD. Step 1: Register for an Embodi3D account If you haven't already done so, you'll need to register for an embodi3d account. Registration is free and only takes a minute. Once you are registered you'll receive a confirmatory email that verifies you are the owner of the registered email account. Click the link in the email to activate your account. The democratiz3D service will use this email account to send you notifications when your files are ready for download. Step 2: Create an NRRD file with Slicer If you haven't already done so, go to slicer.org and download Slicer for your operating system. Slicer is a free software program for medical imaging research. It also has the ability to save medical imaging scans in a variety of formats, which is what we will use it for in this tutorial. Next, launch Slicer. Insert your CD or DVD containing the CT scan into your computer and open the CD with File Explorer or equivalent file browsing application for your operating system. You should find a folder that contains numerous DICOM files in it, as shown in Figure 3. Drag-and-drop the entire DICOM folder onto the Slicer welcome page, as shown in Figure 4. Click OK when asked to load the study into the DICOM database. Click Copy when asked if you want to copy the images into the local database directory. Figure 3: A typical DICOM data set contains numerous individual DICOM files. Figure 4: Dragging and dropping the DICOM folder onto the Slicer application. This will load the CT scan. Once Slicer has finished loading the study, click the save icon in the upper left-hand corner as shown in Figure 5. One of the files in the list will be of type NRRD. make sure that this file is checked and all other files are unchecked. click on the directory button for the NRRD file and select an appropriate directory to save the file. then click Save, as shown in Figure 6. Figure 5: The Save button Figure 6: The Save File box The NRRD file is much better for uploading then DICOM. Instead of having multiple files in a DICOM data set, the NRRD file encapsulates the entire study in a single file. Also, identifiable patient information is removed from the NRRD file. The file is thus anonymized. This is important when sending information over the Internet because we do not want identifiable patient information transmitted. Step 3: Upload the NRRD file to Embodi3D Now go to www.embodi3d.com, click on the democratiz3D navigation menu and select Launch App, as shown in Figure 7. Drag and drop your NRRD file where indicated. While NRRD file is uploading, fill in the "File Name" and "About This File" fields, as shown in Figure 8. Figure 7: Launching the democratiz3D application Figure 8: Uploading the NRRD file and entering basic information To complete basic information about your NRRD file. Do you want it to be private or do you want to share it with the community? Click on the Private File button if the former. If you are planning on sharing it, do you want it to be a free or a paid (licensed) file? Click the appropriate setting. Also select the License Type. If you are keeping the file private, these settings don't matter as the file will remain private. Make sure you accepted the Terms of Use, as shown in Figure 9. Figure 9: Basic information fields about your uploaded NRRD file Next, turn on democratiz3D Processing by selecting the slider under democratiz3D Processing. Make sure the operation CT NRRD to Bone STL is selected. Leave the default threshold of 150 in place. Choose an appropriate quality. Low quality produces small files quickly but the output resolution is low. Medium quality is good for most applications and produces a relatively good file that is not too large. High quality takes the longest to process and produces large output files. Bear in mind that if you upload a low quality NRRD file don't expect the high quality setting to produce a stellar bone model. Medium quality is good enough for most applications. If you wish, you have the option to specify whether you want your output file to be Private or Shared. If you're not sure, click Private. You can always change the visibility of the file later. If you're happy with your settings, click Save & Submit Files. This is shown in Figure 10. Figure 10: Entering the democratiz3D Processing parameters. Step 4: Review Your Completed Bone Model After about 10 to 20 minutes you should receive an email informing you that your file is ready for download. The actual processing time may vary depending on the size and complexity of the file and the load on the processing servers. Click on the link within the email. If you are already on the embodied site, you can access your file by going to your profile. Click your account in the upper right-hand corner and select Profile, as shown in Figure 11. Figure 11: Finding your profile. Your processed file will have the same name as the uploaded NRRD file, except it will end in "– processed". Renders of your new 3D model will be automatically generated within about 6 to 10 minutes. From your new model page you can click "Download this file" to download. If you wish to share your file with the community, you can toggle the privacy setting by clicking Privacy in the lower right-hand corner. You can edit your file or move it from one category to another under the File Actions button on the lower left. These are shown in Figure 12. Figure 12: Downloading, sharing, and editing your new 3D printable model. If you wish to sell your new file, you can change your selling settings under File Actions, Edit Details. Set the file type to be Paid, and specify a price. Please note that your file must be shared in order for other people to see it. This is shown in Figure 13. If you are going to sell your file, be sure you select General Paid File License from the License Type field, or specify your own customized license. For more information about selling files, click here. Figure 13: Making your new file available for sale on the Embodi3D marketplace. That's it! Now you can create your own 3D printable bone models in minutes for free and share or sell them with the click of a button.If you want to download the STL file created in this tutorial, you can download it here. Happy 3D printing!
  19. If you are planning on using the democratiz3D service to automatically convert a medical scan to a 3D printable STL model, or you just happen to be working with medical scans for another reason, it is important to know if you are working with a CT (Computed Tomography or CAT) or MRI (Magnetic Resonance Imaging) scan. In this tutorial I'll show you how to quickly and easily tell the difference between a CT and MRI. I am a board-certified radiologist, and spent years mastering the subtleties of radiology physics for my board examinations and clinical practice. My goal here is not to bore you with unnecessary detail, although I am capable of that, but rather to give you a quick, easy, and practical way to understand the difference between CT and MRI if you are a non-medical person. Interested in Medical 3D Printing? Here are some resources: Free downloads of hundreds of 3D printable medical models. Automatically generate your own 3D printable medical models from CT scans. Have a question? Post a question or comment in the medical imaging forum. A Brief Overview of How CT and MRI Works For both CT (left) and MRI (right) scans you will lie on a moving table and be put into a circular machine that looks like a big doughnut. The table will move your body into the doughnut hole. The scan will then be performed. You may or may not get IV contrast through an IV. The machines look very similar but the scan pictures are totally different! CT and CAT Scans are the Same A CT scan, from Computed Tomography, and a CAT scan from Computed Axial Tomography are the same thing. CT scans are based on x-rays. A CT scanner is basically a rotating x-ray machine that takes sequential x-ray pictures of your body as it spins around. A computer then takes the data from the individual images, combines that with the known angle and position of the image at the time of exposure, and re-creates a three-dimensional representation of the body. Because CT scans are based on x-rays, bones are white and air is black on a CT scan just as it is on an x-ray as shown in Figure 1 below. Modern CT scanners are very fast, and usually the scan is performed in less than five minutes. Figure 1: A standard chest x-ray. Note that bones are white and air is black. Miscle and fat are shades of gray. CT scans are based on x-ray so body structures have the same color as they don on an x-ray. How does MRI Work? MRI uses a totally different mechanism to generate an image. MRI images are made using hydrogen atoms in your body and magnets. Yes, super strong magnets. Hydrogen is present in water, fat, protein, and most of the "soft tissue" structures of the body. The doughnut of an MRI does not house a rotating x-ray machine as it does in a CT scanner. Rather, it houses a superconducting electromagnet, basically a super strong magnet. The hydrogen atoms in your body line up with the magnetic field. Don't worry, this is perfectly safe and you won't feel anything. A radio transmitter, yes just like an FM radio station transmitter, will send some radio waves into your body, which will knock some of the hydrogen atoms out of alignment. As the hydrogen nuclei return back to their baseline position they emit a signal that can be measured and used to generate an image. MRI Pulse Sequences Differ Among Manufacturers The frequency, intensity, and timing of the radio waves used to excite the hydrogen atoms, called a "pulse sequence," can be modified so that only certain hydrogen atoms are excited and emit a signal. For example, when using a Short Tau Inversion Recovery (STIR) pulse sequence hydrogen atoms attached to fat molecules are turned off. When using a Fluid Attenuation Inversion Recovery (FLAIR) pulse sequence, hydrogen atoms attached to water molecules are turned off. Because there are so many variables that can be tweaked there are literally hundreds if not thousands of ways that pulse sequences can be constructed, each generating a slightly different type of image. To further complicate the matter, medical scanner manufacturers develop their own custom flavors of pulse sequences and give them specific brand names. So a balanced gradient echo pulse sequence is called True FISP on a Siemens scanner, FIESTA on a GE scanner, Balanced FFE on Philips, BASG on Hitachi, and True SSFP on Toshiba machines. Here is a list of pulse sequence names from various MRI manufacturers. This Radiographics article gives more detail about MRI physics if you want to get into the nitty-gritty. Figure 2: Examples of MRI images from the same patient. From left to right, T1, T2, FLAIR, and T1 post-contrast images of the brain in a patient with a right frontal lobe brain tumor. Note that tissue types (fat, water, blood vessels) can appear differently depending on the pulse sequence and presence of IV contrast. How to Tell the Difference Between a CT Scan and an MRI Scan? A Step by Step Guide Step 1: Read the Radiologist's Report The easiest way to tell what kind of a scan you had is to read the radiologist's report. All reports began with a formal title that will say what kind of scan you had, what body part was imaged, and whether IV contrast was used, for example "MRI brain with and without IV contrast," or "CT abdomen and pelvis without contrast." Step 2: Remember Your Experience in the MRI or CT (CAT) Scanner Were you on the scanner table for less than 10 minutes? If so you probably had a CT scan as MRIs take much longer. Did you have to wear earmuffs to protect your hearing from loud banging during the scan? If so, that was an MRI as the shifting magnetic fields cause the internal components of the machine to make noise. Did you have to drink lots of nasty flavored liquid a few hours before the scan? If so, this is oral contrast and is almost always for a CT. How to tell the difference between CT and MRI by looking at the pictures If you don't have access to the radiology report and don't remember the experience in the scanner because the scan was A) not done on you, or you were to drunk/high/sedated to remember, then you may have to figure out what kind of scan you had by looking at the pictures. This can be complicated, but don't fear I'll show you how to figure it out in this section. First, you need to get a copy of your scan. You can usually get this from the radiology or imaging department at the hospital or clinic where you had the scan performed. Typically these come on a CD or DVD. The disc may already have a program that will allow you to view the scan. If it doesn't, you'll have to download a program capable of reading DICOM files, such as 3D Slicer. Open your scan according to the instructions of your specific program. You may notice that your scan is composed of several sets of images, called series. Each series contains a stack of images. For CT scans these are usually images in different planes (axial, coronal, and sagittal) or before and after administration of IV contrast. For MRI each series is usually a different pulse sequence, which may also be before or after IV contrast. Step 3: Does the medical imaging software program tell you what kind of scan you have? Most imaging software programs will tell you what kind of scan you have under a field called "modality." The picture below shows a screen capture from 3D Slicer. Looking at the Modality column makes it pretty obvious that this is a CT scan. Figure 3: A screen capture from the 3D Slicer program shows the kind of scan under the modality column. Step 4: Can you see the CAT scan or MRI table the patient is laying on? If you can see the table that the patient is laying on or a brace that their head or other body part is secured in, you probably have a CT scan. MRI tables and braces are designed of materials that don't give off a signal in the MRI machine, so they are invisible. CT scan tables absorb some of the x-ray photons used to make the picture, so they are visible on the scan. Figure 4: A CT scan (left) and MRI (right) that show the patient table visible on the CT but not the MRI. Step 5: Is fat or water white? MRI usually shows fat and water as white. In MRI scans the fat underneath the skin or reservoirs of water in the body can be either white or dark in appearance, depending on the pulse sequence. For CT however, fat and water are almost never white. Look for fat just underneath the skin in almost any part of the body. Structures that contained mostly water include the cerebrospinal fluid around the spinal cord in the spinal canal and around the brain, the vitreous humor inside the eyeballs, bile within the gallbladder and biliary tree of the liver, urine within the bladder and collecting systems of the kidneys, and in some abnormal states such as pleural fluid in the thorax and ascites in the abdomen. It should be noted that water-containing structures can be made to look white on CT scans by intentional mixing of contrast in the structures in highly specialized scans, such as in a CT urogram or CT myelogram. But in general if either fat or fluid in the body looks white, you are dealing with an MRI. Step 6: Is the bone black? CT never shows bones as black. If you can see bony structures on your scan and they are black or dark gray in coloration, you are dealing with an MRI. On CT scans the bone is always white because the calcium blocks (attenuates) the x-ray photons. The calcium does not emit a signal in MRI scans, and thus appears dark. Bone marrow can be made to also appear dark on certain MRI pulse sequences, such as STIR sequences. If your scan shows dark bones and bone marrow, you are dealing with an MRI. A question I am often asked is "If bones are white on CT scans, if I see white bones can I assume it is a CT?" Unfortunately not. The calcium in bones does not emit signal on MRI and thus appears black. However, many bones also contain bone marrow which has a great deal of fat. Certain MRI sequences like T1 and T2 depict fat as bright white, and thus bone marrow-containing bone will look white on the scans. An expert can look carefully at the bone and discriminate between the calcium containing cortical bone and fat containing medullary bone, but this is beyond what a layperson will notice without specialized training. Self Test: Examples of CT and MRI Scans Here are some examples for you to test your newfound knowledge. Example 1 Figure 5A: A mystery scan of the brain Look at the scan above. Can you see the table that the patient is laying on? No, so this is probably an MRI. Let's not be hasty in our judgment and find further evidence to confirm our suspicion. Is the cerebrospinal fluid surrounding the brain and in the ventricles of the brain white? No, on this scan the CSF appears black. Both CT scans and MRIs can have dark appearing CSF, so this doesn't help us. Is the skin and thin layer of subcutaneous fat on the scalp white? Yes it is. That means this is an MRI. Well, if this is an MRI than the bones of the skull, the calvarium, should be dark, right? Yes, and indeed the calvarium is as shown in Figure 5B. You can see the black egg shaped oval around the brain, which is the calcium containing skull. The only portion of the skull that is white is in the frontal area where fat containing bone marrow is present between two thin layers of calcium containing bony cortex. This is an MRI. Figure 5B: The mystery scan is a T1 spoiled gradient echo MRI image of the brain. Incidentally this person has a brain tumor involving the left frontal lobe. Example 2 Figure 6A: Another mystery scan of the brain Look at the scan above. Let's go through our process to determine if this is a CT or MRI. First of all, can you see the table the patient is lying on or brace? Yes you can, there is a U-shaped brace keeping the head in position for the scan. We can conclude that this is a CT scan. Let's investigate further to confirm our conclusion. Is fat or water white? If either is white, then this is an MRI. In this scan we can see both fat underneath the skin of the cheeks which appears dark gray to black. Additionally, the material in the eyeball is a dark gray, immediately behind the relatively white appearing lenses of the eye. Finally, the cerebrospinal fluid surrounding the brainstem appears gray. This is not clearly an MRI, which further confirms our suspicion that it is a CT. If indeed this is a CT, then the bones of the skull should be white, and indeed they are. You can see the bright white shaped skull surrounding the brain. You can even see part of the cheekbones, the zygomatic arch, extending forward just outside the eyes. This is a CT scan. Figure 6B: The mystery scan is a CT brain without IV contrast. Example 3 Figure 7A: A mystery scan of the abdomen In this example we see an image through the upper abdomen depicting multiple intra-abdominal organs. Let's use our methodology to try and figure out what kind of scan this is. First of all, can you see the table that the patient is laying on? Yes you can. That means we are dealing with the CT. Let's go ahead and look for some additional evidence to confirm our suspicion. Do the bones appear white? Yes they do. You can see the white colored thoracic vertebrae in the center of the image, and multiple ribs are present, also white. If this is indeed a CT scan than any water-containing structures should not be white, and indeed they are not. In this image there are three water-containing structures. The spinal canal contains cerebrospinal fluid (CSF). The pickle shaped gallbladder can be seen just underneath the liver. Also, this patient has a large (and benign) left kidney cyst. All of these structures appear a dark gray. Also, the fat underneath the skin is a dark gray color. This is not in MRI. It is a CT. Figure 7B: The mystery scan is a CT of the abdomen with IV contrast Example 4 Figure 8A: A mystery scan of the left thigh Identifying this scan is challenging. Let's first look for the presence of the table. We don't see one but the image may have been trimmed to exclude it, or the image area may just not be big enough to see the table. We can't be sure a table is in present but just outside the image. Is the fat under the skin or any fluid-filled structures white? If so, this would indicate it is an MRI. The large white colored structure in the middle of the picture is a tumor. The fat underneath the skin is not white, it is dark gray in color. Also, the picture is through the mid thigh and there are no normal water containing structures in this area, so we can't use this to help us. Well, if this is a CT scan than the bone should be white. Is it? The answer is no. We can see a dark donut-shaped structure just to the right of the large white tumor. This is the femur bone, the major bone of the thigh and it is black. This cannot be a CT. It must be an MRI. This example is tricky because a fat suppression pulse sequence was used to turn the normally white colored fat a dark gray. Additionally no normal water containing structures are present on this image. The large tumor in the mid thigh is lighting up like a lightbulb and can be confusing and distracting. But, the presence of black colored bone is a dead giveaway. Figure 8B: The mystery scan is a contrast-enhanced T2 fat-suppressed MRI Conclusion: Now You Can Determine is a Scan is CT or MRI This tutorial outlines a simple process that anybody can use to identify whether a scan is a CT or MRI. The democratiz3D service on this website can be used to convert any CT scan into a 3D printable bone model. Soon, a feature will be added that will allow you to convert a brain MRI into a 3D printable model. Additional features will be forthcoming. The service is free and easy to use, but you do need to tell it what kind of scan your uploading. Hopefully this tutorial will help you identify your scan. If you'd like to learn more about the democratiz3D service click here. Thank you very much and I hope you found this tutorial to be helpful. Nothing in this article should be considered medical advice. If you have a medical question, ask your doctor.
  20. Version 1.0.0

    1,408 downloads

    This is my best selling model for 2019. Download, print, assemble, enjoy. Merry Christmas Originally modded as an engagement ring box, it became really popular birthday gift for the colleague from heart-related departments. I'm selling one of those models for 35$ I'm always bringing few, when I'm going on conference. Really nice gift. I'm printing those with Silk PLA. The metalic colors looks fantastic. I'm using several support blockers for the atrii, because this negates the artefacts and makes the whole upper part hollow. It requires some experience... Slice thickness: 0,15mm Infill: 30% gyroid Circular bottom fill pattern. Six neodymium magnets, 8x2mm. If you use too powerful magnets, the parts are closing so strong, that they can hurt someone. N50 are fine. cyanacrilic glue. Make sure you're gluing the magnets with the right poles!
    Free
  21. 261 downloads

    This anatomically accurate mandible bone (jawbone) was created by Dr. Marco Vettorello, who has graciously given permission to share it here. The mandible forms the lower jaw. It is connected to the rest of skull at the temporomandibular joint. The file is in STL format and compressed with ZIP. This file is also available here. jaw, mandible, jaw, bone, 3d, printing, angle, ramus, coronoid, process, .stl, 3d, model, printable, printing, medicine, medical, incisor, molar, premolar, canine, teeth, tooth, dental, dentistry, foramina, bone,
    Free
  22. 1,684 downloads

    This anatomically accurate human heart was created by Dr. Marco Vettorello, who has graciously given permission to share it here. The file is in STL format and compressed with ZIP. This file is also available here.
    Free
  23. Version 1.0.0

    0 downloads

    An aneurysm of the abdominal aorta in close proximity to horseshoe kidney. Postoperative model. Preoperative version. Due to the improved circulation (result of the surgery), the structures are with improved details, compared to the previous model.
    $25
  24. Version 1.0.0

    1 download

    An aneurysm of the abdominal aorta in close proximity to horseshoe kidney. Presurgical model. The operation is ongoing. Honestly, I'm pretty happy with the result (and also the surgical team, which ordered the model). I printed it on Prusa MK3S, the kidney with the veins and the distal parts of the arteries with white Esun PLA, the aorta with red 3dJake Eco PLA, on 0,150mm layer height. The kidney is printed on 30% gyroid infill and 2 perimeters, with support on build plate only plus several support enforcers. The aorta is with 4 perimeters and 100% concentric infill, with support on build plate only and few support blockers. I glued them together with cyanacrylic glue and used a touch of red acrylic paint to make the glued parts more appealing. It took 300 grams of plastic and the printing time was 36 hours because of the kidney. aorta, aneurysm, horseshoe, kidney, presurgical, 3d, printing, celiac, trunk, vessels, mesenteric, superior, inferior, iliac, common, external, internal, abdomen, infrarrenal, organ, vascular, abdominal,
    $25
  25. Version 1.0.0

    104 downloads

    This is a model, generated from a ultrasound dataset. So far, I'm quite happy with the result. Source - Ultrasound baby test3 ultrasound, baby, fetus, 3d, printing, head, printable, .stl 3d, model, frontal, maxillofacial, nasal, eyelid, skull, neck,
    Free
×
×
  • Create New...