Jump to content

Search the Community

Showing results for tags '3d printing'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Blogs

  • Embodi3d Test Blog
  • 3D Printing in Medicine
  • Cool Medical 3D-Printing
  • 3D Bio Printing by Paige Anne Carter
  • SSchoppert's Blog
  • Additive Manufacturing in Medicine
  • biomedical 3D printing
  • Bryce's Blog
  • Chris Leggett
  • 3D Models Help Improve Surgical Precision, Reduce Operating Time
  • Desktop 3D Printing in Medical Imaging
  • 3D Printing: Radiology corner
  • The Embodi3D.com Blog
  • descobar3d's Blog
  • 3D Printing in Anthropology
  • Learn to 3D Print: Basic Tools from software to printers
  • 3D printing for bio-medicine
  • 3D Biomedical Printing - by Jacob M.
  • Valchanov's Blog
  • Deirdre_Manion-Fischer's Blog
  • Matt Johnson's Biomedical 3D Printing Blog
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Mike at Medical Models
  • Best embodi3d.com Medical and Anatomic Files

Forums

  • Biomedical 3D Printing
    • Hardware and 3D Printers
    • democratiz3D®
    • Software
    • Clinical applications
    • 3D Printable Models
    • Medical Imaging: CT, MRI, US
    • Science and Research
    • News and Trending Topics
    • Education, Conferences, Meetings, Events
  • General
    • Announcements
    • Questions and Answers
    • Suggestions and Feedback
    • Member Lounge (members only)
  • Classifieds, Goods and Services
    • General Classifieds - members post free
    • Services needed
    • Services offered
    • Stuff for sale/needed
    • Post a Job
    • Looking for work - visible only to members

Categories

  • democratiz3D® Processing
  • Bones
    • Skull and Head
    • Dental, Orthodontic, Maxillofacial
    • Spine and Pelvis
    • Extremity, Upper (Arm)
    • Extremity, Lower (Leg)
    • Thorax and Ribs
    • Whole body
    • Skeletal tumors, fractures and bony pathology
  • Muscles
    • Head and neck muscles
    • Extremity, Lower (Leg) Muscles
    • Extremity, Upper (Arm) Muscles
    • Thorax and Ribs Muscles
    • Abdomen and Pelvis muscles
    • Whole body Muscles
    • Muscular tumors and sarcomas
  • Cardiac and Vascular
    • Heart
    • Congenital Heart Defects
    • Aorta
    • Mesenteric and abdominal arteries
    • Veins
  • Organs of the Body
    • Brain and nervous system
    • Kidneys
    • Lungs
    • Liver
    • Other organs
  • Skin
  • Veterinary
    • Dogs
    • Cats
    • Other
  • Science and Research
    • Paleontology
    • Anthropology
    • Misc Research
  • Miscellaneous
    • Formlabs
    • Anatomical Art
  • Medical CT Scan Files
    • Skull, Head, and Neck CTs
    • Dental, Orthodontic, Maxillofacial CTs
    • Thorax and Ribs CTs
    • Abdomen and Pelvis CTs
    • Extremity, Upper (Arm) CTs
    • Extremity, Lower (Leg) CTs
    • Spine CTs
    • Whole Body CTs
    • MRIs
    • Ultrasound
    • Veterinary/Animals
    • Other

Product Groups

  • Premium Services
  • Physical Print Quotes

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Name


Secondary Email Address


Interests

Found 222 results

  1. Version 1.0.0

    21 downloads

    This 3D printable STL file contains a model of the right shoulder was derived from a real medical CT scan. This model was created using the democratiz3D free online 3D model creation service. QIN-HN-01-0003

    Free

  2. Version 1.0.0

    62 downloads

    This 3D printable STL file contains a model of the rib cage was derived from a real medical CT scan. This model was created using the democratiz3D free online 3D model creation service. QIN-HN-01-0003

    Free

  3. Version 1.0.0

    22 downloads

    This 3D printable STL file contains a model of the thoracic spine was derived from a real medical CT scan. This model was created using the democratiz3D free online 3D model creation service. QIN-HN-01-0003

    Free

  4. Version 1.0.0

    13 downloads

    This 3D printable model of the abdominal aorta and mesenteric arteries was created from a CT scan. This model was created using the democratiz3D 3D model creation service TCGA-G3-AAV6

    Free

  5. Version 1.0.0

    40 downloads

    This 3D printable STL file contains a model of the thoracic spine derived from a CT. The spine has significant scoliosis (abnormal curvature) This model was created using the democratiz3D 3D model creation service TCGA-DD-A1E9 thorax with scoliosis - processed

    Free

  6. Version 1.0.0

    34 downloads

    This 3D printable STL model of the liver of a 62 year old woman with hepatocellular carcinoma shows a large tumor in the liver. The liver, spleen and both kidneys along with the arteries are well shown. hcc, 3d printing, hepatocellular carcinoma, stl, abdomen, ct abdomen, liver, spleen, organs, aorta, kidney, cancer This model was generated using the democratiz3D service. TCGA-BC-A10Z Liver

    Free

  7. Version 1.0.0

    4 downloads

    This is a 3D printable STL model of the thoracic spine derived from a CT scan. STS_003. This model was created using the democratiz3D service.

    Free

  8. Vishnu

    CT IMAGE

    Version 1.0.0

    7 downloads

    This file is a converted file, ct image, 3d printing, ct without contrast, stl, axial, lumbar, spine, psoas muscle, bone, dicom, sacrum

    Free

  9. Version 1.0.0

    17 downloads

    This 3D printable STL file contains a model of the pelvis derived from a CT. This model was created using the democratiz3D 3D model creation service. TCGA-CS-6185

    Free

  10. 75 downloads

    This STL file of the cervical spine was generated from real CT scan data and is thus anatomically accurate as it comes from a real person. It shows the skull base, part of the mandible, and cervical and upper thoracic vertebrae. Download is free for registered members. This file was originally created by Dr. Bruno Gobbato, who has graciously given permission to share it here on Embodi3D. Modifications were made by Dr. Mike to make it suitable for 3D printing. The file(s) are distributed under the Creative Commons Attribution-NonCommercial-ShareAlike license. It can't be used for commercial purposes. If you would like to use it for commercial purposes, please contact the authors. Technical specs: File format: STL Manifold mesh: Yes Minimum wall thickness: 1 mm Triangles: 451422

    Free

  11. From the album: Blog images 4

    MRI knee 3D printable model

    © 2017 embodi3D

  12. 908 downloads

    This 3D printable brain is from an MRI scan of a 24 year old human female. Files are available for both gray matter (pial) and white matter (smoothwm) in both hemispheres. Files are available in both STL and Blender formats. This model is shared under the Creative Commons Attribution license and was created by Prevue Medical and posted here.

    $4.99

  13. 179 downloads

    This shoulder and humerus was generated from real CT scan data and is thus anatomically accurate as it comes from a real person. It shows the left scapula, humerus, proximal radius and ulna bones, and the shoulder and elbow joints. The humerus has been joined to the scapula at the glenohumeral joint to form one solid piece. This file was originally created by Dr. Bruno Gobbato, who has graciously given permission to share it here on Embodi3D. Modifications were made by Dr. Mike to make it suitable for 3D printing. The file(s) are distributed under the Creative Commons Attribution-NonCommercial-ShareAlike license. It can't be used for commercial purposes. If you would like to use it for commercial purposes, please contact the authors. Technical specs: File format: STL Manifold mesh: Yes Minimum wall thickness: 1 mm Triangles: 125370

    Free

  14. Embodi3D member tserhardt has uploaded an outstanding tutorial on using the Grayscale Model Maker module in the free software program 3D slicer to create 3D printable anatomic models. Read her tutorial here. Thanks for sharing with the community!
  15. There is an RSNA 3D printing Special Interest Group (SIG) meeting this August 31, 2017 in Washington DC at the FDA. This is an important meeting since we want to make sure that 3D printing remains open to everybody and the FDA doesn't required expensive, proprietary and FDA-approved software for medical 3D printing. If you want to know more about the SIG, here is the page. Non-physicians can join. https://www.rsna.org/3D-Printing-SIG/
  16. The Embodi3D website offers a large and ever-growing library of 3D printable files that are available for free to anyone who signs up for a free account. Images include files from normal anatomy to those related to paleontology to complex musculoskeletal tumors. This site was founded by a practicing interventional radiologist with a passion for 3D printing and perfecting an easier method for converting files into those that may be downloaded and printed—a medical 3D printing application called democratiz3D. Commercial Medical 3D Printing Software Three-dimensional printing has become a popular research and industrial interest in the orthopaedic surgery world. International companies such as Stryker (www.stryker.com) and DePuy Synthes (www.depuysynthes.com) are now marketing designs in craniofacial reconstruction, arthroplasty, and spine deformity surgery that utilize 3D printing in order to individualize implants and surgical techniques. Specialized software for 3D printing in healthcare is sold by Materialise in an offering called Mimics. Vital Images, a medical imaging and informatics company, has partnered with Stratsys, a 3D printer manufacturer, to provide a segmentation and healthcare 3D printing solution. However, these technologies are costly, and may be cost-prohibitive for the average patient or surgeon. Three-Dimensional Printing for Patient Education and Surgical Planning Although most radiology departments currently have the capability to quickly convert a CT (computer tomography) scan to a three-dimensional image for better understanding of a patient’s anatomy, visualized anatomy cannot replace the ability to feel and manipulate a model. Three-dimensional printing can, however, bring these images to life. Printers have the capability to use differing materials, such as polymers, plastics, ceramics, metals, and biologics to create models. These models can be an excellent tool for patient and trainee education as well as surgical planning. In procedures such as complex tumors or difficult pelvic fractures, the surgeon could practice different techniques on an exact replica of the patient’s anatomy so that they have a better grasp of their approach to the patient. Furthermore, trainees currently learn and practice their surgical skills on cadaveric specimens, which can also be costly. Having access to a 3D printer that could create models could potentially decrease the utilization of cadavers. Free and Easy Medical Three-Dimensional Printing Creating files from CT scans that can be used in 3D printing is easy with the use of the Embodi3d website. Detailed instructions are available on the tutorial pages of the website, but a brief overview will be described here. CT scans may be obtained from the radiology department in DICOM format. Free software available online at www.slicer.org can be used to review the DICOM imaging, isolate the area of interest and convert to an .nrrd file. This .nrrd file may then be loaded onto the democratiz3D application and formatted in a number of ways based on threshold as shown in the images below. Files may be opened through the application or dragged and dropped into the file area (Figure 1, Figure 2). Details of the file, such as the title, description of the anatomy or pathology, and keywords are placed beneath the upload (Figure 3). Different thresholds are available to be automatically placed on the uploaded file, including bone, detailed bone, muscle, and skin (Figure 4). These files as well as the final, processed, files may be shared or remain private, free or at a fee to download by the community. Figure 1. The link to the democratiz3D application is located at the top menu bar of the main page at https://www.embodi3d.com. Figure 2. Once on the democratiz3D application, you may upload the .nrrd file or drag and drop the .nrrd file into the uploading area. Figure 3. While the .nrrd file is processing, you may edit the details of the file, such as the title, tags, and description. Figure 4. The application allows for thresholding of bone, detailed bone, muscle, and skin from the uploaded CT scan. Once the file has been processed, you receive a notification and may view the file as well as automatically created screen shots (Figure 5). This is now an STL file that may be downloaded by clicking “Download this file”. If this is a file that you have downloaded, you may also edit the details of the file, move it to another category or upload a new version of the STL file directly onto the page (Figure 6). Although the democratiz3D application is a powerful and quick tool to convert .nrrd files to STL files, it is limited by the quality of the CT scan. Therefore, users may wish to clean up the model using free software such as Meshmixer or Blender. Once the files have been edited, they are maintained as an STL file that may be directly uploaded onto the page as a new version (Figure 7). These may then be placed in a category that is most descriptive of the file (Figure 8). Figure 5. After about 5-20 minutes of processing (depending on the size of the file), you will get a notification and e-mail that the file has processed. The democrati3D application has converted the file into an STL file is now available for downloading and use in 3D printing. Figure 6. If you would like to change the details, or upload new files or screen shots, you may choose from the drop-down menu. Figure 7. In order to upload a new version of the file, such as after it is edited in the free software Meshmixer or Blender, you may choose from the drop-down menu and drag and drop a new STL file. Figure 8. Because Embodi3D has created a library divided into different categories, you may move your file into the appropriate category to allow for ease of sharing with the community. Alternatively, files that have been downloaded and edited may be uploaded as new files using the “Create” selection on the top menu (Figure 9). Once you have chosen the most accurate category (Figure 10), you can upload the new file by selecting the file or drag and drop into the proper area (Figure 11). This will then take you to similar section as outlined above in order to edit the details and sharing options for your file. Figure 9. Upload an STL file by selecting the “Create” menu at the top of the webpage. Figure 10. Select the category under which the file most accurately fits. Figure 11. Upload the STL file by dragging and dropping or selecting the file. As you can see, creating STL files from individual CT scans is an easy, 15-20 minute process that is reasonable for the busy orthopaedic surgeon to utilize in their practice. For educational purposes, however, not every trainee, surgeon, or radiologist has access to patients with such a wide array of pathologies. The Embodi3D community provides an ever-growing diverse library of normal anatomy and pathology that may be downloaded for free and used for 3D printing. The files are divided into categories including: Bones, Muscles, Cardiac and Vascular, Brain and nervous system, Organs of the Body, Veterinary, Paleontology, Anthropology, Research and Miscellaneous. In order to access these files, click “Download” from the top menu (Figure 12), which will take you to the main Downloads page (Figure 13). The categories available are listed on the right side of the page, and will bring you to each category page. There, the number of files available within each category is listed. Once the desired file is selected, the file may be downloaded as described above. Figure 12. In order to access the library of files, click “Download” from the top menu on the main page. Figure 13. The Downloads page has a listing of the available categories to browse and explore for the desired files. Creating and printing 3D models of CT scans will be useful in the future of medicine and the era of individualized medicine. The free library of medical 3D printing files available at embodi3D.com as well as the free conversion application democratiz3D will be an invaluable resource for education as well as for the private orthopaedic surgeon with limited resources. Furthermore, because healthcare costs are a main focus in the United States, having the ability to download and create models for a much lower price than through commercial 3D printing companies will be useful to decrease the cost of individualized care. For more information about 3D printing in orthopaedic surgery, please see the following references: Cai H. Application of 3D printing in orthopedics: status quo and opportunities in China. Ann Transl Med. 2015;3(Suppl 1):S12. Eltorai AEM, Nguyen E, Daniels AH. Three-Dimensional Printing in Orthopedic Surgery. Orthopedics. 2015;38(11):684-687. Mulford JS, Babazadeh S, Mackay N. Three-dimensional printing in orthopaedic surgery: review of current and future applications. ANZ J Surg. 2016;86(9):648-653. Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. 2016;15(1):115.
  17. Version 1.0.0

    1 download

    This model is the bilateral thigh skin rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. Myxoid fibrosarcoma (or myxoid MFH) is the most common subtype of MFH, at about 10%-20% of cases. Clinically, the tumor presents as a deep, slow-growing, painless mass. It is located more commonly in the lower extremities and retroperitoneum. Imaging on MRI demonstrates a mass with low signal intensity on T1-weighting imaging, and high signal intensity on T2-weighted imaging. On histology, a myxoid background is present with a storiform (or cartwheel) pattern seen on low-power imaging, seen in fibrosarcomas. A “myxoid background” is composed of a clear, mucoid substance. Treatment includes radiation, wide surgical resection, and chemotherapy in selected cases. However, the 5-year survival is 50%-60% depending on size, grade, depth and presence of metastasis. The term “malignant fibrous histiocytoma” was coined in the 1960s by Margaret R. Murray when histology a sarcoma demonstrated an appearance like histiocytes, with characteristics of phagocytosis and a pleomorphic pattern. With further research, this entity was identified to have a wider range of appearances with a fibrous characteristic. Today, these sarcomas are known as “pleomorphic sarcomas.” Recently, a change in the understanding of soft tissue tumors has purported that MFH is not a specific type of cancer, but a common morphologic pattern shared by unrelated tumors. One school of thought states that this morphologic pattern is shared by tumors as a common final pathway in cancer progression whereas another school of thought believes that true pleomorphic sarcomas are the result of a transformation from mesenchymal stem cells. Future research into understanding the pathway of these sarcomas and progression will help to target specific therapies and, hopefully, eventual cures. This model was created from the file STS_022.

    Free

  18. Version 1.0.0

    26 downloads

    This model is the left lower extremity bone rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing The lower extremity consists of the femur, tibia, fibula, and foot. The femur has an anterior bow of differing degrees, which is important to understand when fixing a femur fracture with an intramedullary nail to not penetrate the anterior cortex. Distally, the femur includes the medial and lateral femoral condyles, which articulate with the proximal tibia to form the knee joint, as well as the trochlea anteriorly, which articulates with the patella. The proximal tibia includes the medial plateau (which is concave) and the lateral plateau (which is convex). The Proximal tibia has a 7-10 degree posterior slope. On the anterior proximal tibia, the tibial tuberosity, where the patellar tendon attaches. On the anteromedial surface of the tibia is Gerdy's tubercle, where the sartorius, gracilis, and semitendinosus attach. The distal tibia creates the superior and medial (plafond and medial malleolus) of the ankle joint. The proximal fibula is the attachment for the posterolateral corner structures of the knee joint. The peroneal nerve wraps around the fibular neck. The distal fibula is the lateral malleolus and a common site for ankle fractures. This model was created from the file STS_022.

    Free

  19. Version 1.0.0

    18 downloads

    This model is the left leg bone rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The leg includes the area between the knee and the ankle and houses the tibia and fibula. The proximal tibia includes the medial plateau (which is concave) and the lateral plateau (which is convex). The Proximal tibia has a 7-10 degree posterior slope. The tibial tuberosity is located on the anterior proximal tibia, which is where the patellar tendon attaches. On the anteromedial surface of the tibia is Gerdy's tubercle, where the sartorius, gracilis, and semitendinosus attach. The distal tibia creates the superior and medial (plafond and medial malleolus) of the ankle joint. The proximal fibula is the attachment for the posterolateral corner structures of the knee joint. The peroneal nerve wraps around the fibular neck. The distal fibula is the lateral malleolus and a common site for ankle fractures. The ankle is a hinge (or ginglymus) joint made of the distal tibia (tibial plafond, medial and posterior malleoli) superiorly and medially, the distal fibula (lateral malleolus) laterally and the talus inferiorly. Together, these structures form the ankle “mortise”, which refers to the bony arch. Normal range of motion is 20 degrees dorsiflexion and 50 degrees plantarflexion. Stability is provided by the anterior talofibular ligament (ATFL), calcaneofibular ligament (CFL), and posterior talofibular ligament (PTFL) laterally, and the superficial and deep deltoid ligaments medially. The ankle is one of my most common sites of musculoskeletal injury, including ankle fractures and ankle sprains, due to the ability of the joint to invert and evert. The most common ligament involved in the ATFL. The foot is commonly divided into three segments: hindfoot, midfoot, and forefoot. These sections are divided by the transverse tarsal joint (between the talus and calcaneus proximally and navicular and cuboid distally), and the tarsometatarsal joint (between the cuboids and cuneiforms proximally and the metatarsals distally). The first tarsometatarsal joint (medially) is termed the “Lisfranc” joint, and is the site of the Lisfranc injury seen primarily in athletic injuries. This model was created from the file STS_022.

    Free

  20. Version 1.0.0

    3 downloads

    This model is the left leg skin rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. Landmarks of the lower extremity consist of bony and muscular landmarks. Proximally, the extensor mechanism consists of the quadriceps tendon, patella, and the tibial tuberosity, which is located on the anterior proximal tibia, where the patellar tendon attaches. On the anteromedial surface of the tibia is Gerdy's tubercle, where the sartorius, gracilis, and semitendinosus attach. Laterally, the head of the fibula may be palpated, which is the attachment for the posterolateral corner structures of the knee joint. The peroneal nerve wraps around the fibular neck, and a tinel’s sign may be elicited due to its superficial position at this location. Distally, the anterior ankle joint may be palpated. Pain with palpation may be indicative of osteoarthritis if general or an osteochondral defect if localized. The medial and lateral malleoli are located on either side of the tibiotalar joint, respectively and are the site of common ankle fractures. Posteriorly, the Achilles tendon inserts on the calcaneus. A defect along this tendon may be a sign of a tendon rupture. The superficial peroneal nerve can possibly be isolated on the lateral aspect of the dorsal foot with full plantarflexion of the fourth ray. Topographical landmarks of the foot and ankle consist of muscular, tendinous, and bony structures. Proximally, the superficial muscles of the anterior (tibialis anterior), lateral (peroneals) and posterior (gastrocnemius) compartments may be palpated. Anteriorly, the tibialis anterior tendon crosses the ankle joint and is used as a landmark for ankle joint injections and aspirations, where the practitioner will place the needle just lateral to the tendon. Posteriorly, the gastrocnemius and soleus converge to form the Achilles tendon. Ruptures of the tendon as well as tendinous changes due to Achilles tendinopathy may be palpated. At the level of the ankle joint, the joint line, medial malleolus (distal tibia) and lateral malleolus (distal fibula) may be palpated. The extensor hallucis longus and extensor digitorum longus tendons are visible at the surface of the dorsal foot. The extensor digitorum brevis muscle belly is seen on the dorsum of the lateral foot. On the plantar foot, the plantar fascia may be palpated. Nodules associated with plantar fascial fibromatosis may be palpated here. Plantar fasciitis is also diagnosed when pain is associated with palpation of the insertion of the plantar fascia on the medial heel. Other common pathologies on the plantar foot are ulcerations associated with diabetic neuropathy and other neuropathic conditions. This model was created from the file STS_022.

    Free

  21. Version 1.0.0

    38 downloads

    This model is the right lower extremity bone rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The leg includes the area between the knee and the ankle and houses the tibia and fibula. The proximal tibia includes the medial plateau (which is concave) and the lateral plateau (which is convex). The Proximal tibia has a 7-10 degree posterior slope. The tibial tuberosity is located on the anterior proximal tibia, which is where the patellar tendon attaches. On the anteromedial surface of the tibia is Gerdy's tubercle, where the sartorius, gracilis, and semitendinosus attach. The distal tibia creates the superior and medial (plafond and medial malleolus) of the ankle joint. The proximal fibula is the attachment for the posterolateral corner structures of the knee joint. The peroneal nerve wraps around the fibular neck. The distal fibula is the lateral malleolus and a common site for ankle fractures. The ankle is a hinge (or ginglymus) joint made of the distal tibia (tibial plafond, medial and posterior malleoli) superiorly and medially, the distal fibula (lateral malleolus) laterally and the talus inferiorly. Together, these structures form the ankle “mortise”, which refers to the bony arch. Normal range of motion is 20 degrees dorsiflexion and 50 degrees plantarflexion. Stability is provided by the anterior talofibular ligament (ATFL), calcaneofibular ligament (CFL), and posterior talofibular ligament (PTFL) laterally, and the superficial and deep deltoid ligaments medially. The ankle is one of my most common sites of musculoskeletal injury, including ankle fractures and ankle sprains, due to the ability of the joint to invert and evert. The most common ligament involved in the ATFL. The foot is commonly divided into three segments: hindfoot, midfoot, and forefoot. These sections are divided by the transverse tarsal joint (between the talus and calcaneus proximally and navicular and cuboid distally), and the tarsometatarsal joint (between the cuboids and cuneiforms proximally and the metatarsals distally). The first tarsometatarsal joint (medially) is termed the “Lisfranc” joint, and is the site of the Lisfranc injury seen primarily in athletic injuries. This model was created from the file STS_022.

    Free

  22. Version 1.0.0

    10 downloads

    This model is the right knee skin rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. Landmarks of the lower extremity consist of bony and muscular landmarks. Prior to incision, the bone landmarks should be palpated and drawn. The patella is the largest sesamoid bone (bone located within a tendon) and is located on the anterior aspect of the knee. Along with the femur, it forms the patellofemoral joint, providing a mechanical advantage to leg extension. The quadriceps tendon inserts proximally and the patellar tendon inserts distally. The patellar tendon attaches to the tibial tubercle on the anterior aspect of the tibia. On the anteromedial surface of the tibia is Gerdy's tubercle, where the sartorius, gracilis, and semitendinosus attach. Laterally, the head of the fibula may be palpated, which is the attachment for the posterolateral corner structures of the knee joint. The peroneal nerve wraps around the fibular neck, and a tinel’s sign may be elicited due to its superficial position at this location. The knee joint can be palpated and must be accurately located in order to provide landmarks for surgeries such as arthroscopy and arthroplasty. Typically, pain with palpation of the joint line is indicative of knee pathologies such as osteoarthritis or a meniscal tear, with point tenderness at the area of the tear. Proper landmarks are essential for the success of procedures about the knee, and therefore the skin should be adequately evaluated prior to any procedure. This model was created from the file STS_022.

    Free

  23. It's been a while since I posted some of the things I've been up to. Here is a model of a project we just completed to design 3D printable abdominal organ and vessel models for medical device testing. These were each custom designed, printed in sintered nylon, and professionally painted.
  24. I recently attending this conference in Scottsdale Arizona. A lot of great models were on display. Here are a few for your enjoyment.
  25. Version 1.0.0

    3 downloads

    This is a 3D printable STL medical file converted from a CT scan DICOM dataset of a 78-year old female that was presented by left thigh swelling( note the difference in contour between both sides), pathological examination revealed it to be malignant fibrous histiocytosis ( pleomorphic sarcoma) of high grade malignancy. The patient underwent MRI and PET scan 7 and 8 days after the pathological examination respectively. Her treatment plan was combined surgical excision and radiotherapy. 66 days later she developed regional recurrence. After 377 days of follow up, The patient was alive with disease. ( STS-020)

    Free

×
×
  • Create New...