Jump to content

Search the Community

Showing results for tags '3D Printing'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Blogs

  • Embodi3d Test Blog
  • 3D Printing in Medicine
  • Cool Medical 3D-Printing
  • 3D Bio Printing by Paige Anne Carter
  • SSchoppert's Blog
  • Additive Manufacturing in Medicine
  • biomedical 3D printing
  • Bryce's Blog
  • Chris Leggett
  • 3D Models Help Improve Surgical Precision, Reduce Operating Time
  • Desktop 3D Printing in Medical Imaging
  • 3D Printing: Radiology corner
  • The Embodi3D.com Blog
  • descobar3d's Blog
  • 3D Printing in Anthropology
  • Learn to 3D Print: Basic Tools from software to printers
  • 3D printing for bio-medicine
  • 3D Biomedical Printing - by Jacob M.
  • Valchanov's Blog
  • Deirdre_Manion-Fischer's Blog
  • Matt Johnson's Biomedical 3D Printing Blog
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Mike at Medical Models
  • Best embodi3d.com Medical and Anatomic Files

Forums

  • Biomedical 3D Printing
    • Hardware and 3D Printers
    • democratiz3D®
    • Software
    • Clinical applications
    • 3D Printable Models
    • Medical Imaging: CT, MRI, US
    • Science and Research
    • News and Trending Topics
    • Education, Conferences, Meetings, Events
  • General
    • Announcements
    • Questions and Answers
    • Suggestions and Feedback
    • Member Lounge (members only)
  • Classifieds, Goods and Services
    • General Classifieds - members post free
    • Services needed
    • Services offered
    • Stuff for sale/needed
    • Post a Job
    • Looking for work - visible only to members

Categories

  • democratiz3D® Processing
  • Bones
    • Skull and Head
    • Dental, Orthodontic, Maxillofacial
    • Spine and Pelvis
    • Extremity, Upper (Arm)
    • Extremity, Lower (Leg)
    • Thorax and Ribs
    • Whole body
    • Skeletal tumors, fractures and bony pathology
  • Muscles
    • Head and neck muscles
    • Extremity, Lower (Leg) Muscles
    • Extremity, Upper (Arm) Muscles
    • Thorax and Ribs Muscles
    • Abdomen and Pelvis muscles
    • Whole body Muscles
    • Muscular tumors and sarcomas
  • Cardiac and Vascular
    • Heart
    • Congenital Heart Defects
    • Aorta
    • Mesenteric and abdominal arteries
    • Veins
  • Organs of the Body
    • Brain and nervous system
    • Kidneys
    • Lungs
    • Liver
    • Other organs
  • Skin
  • Veterinary
    • Dogs
    • Cats
    • Other
  • Science and Research
    • Paleontology
    • Anthropology
    • Misc Research
  • Miscellaneous
    • Formlabs
  • Medical CT Scan Files
    • Skull, Head, and Neck CTs
    • Dental, Orthodontic, Maxillofacial CTs
    • Thorax and Ribs CTs
    • Abdomen and Pelvis CTs
    • Extremity, Upper (Arm) CTs
    • Extremity, Lower (Leg) CTs
    • Spine CTs
    • Whole Body CTs
    • MRIs
    • Ultrasound
    • Veterinary/Animals
    • Other

Product Groups

  • Premium Services
  • Physical Print Quotes

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Name


Secondary Email Address


Interests

Found 218 results

  1. 51 downloads

    This STL file is related to another set of files demonstrating the congenital heart defect double aortic arch. This heart STL file demonstrates double aortic arch blood pool. Double aortic arch is one of the 2 most common forms of vascular ring, a class of congenital anomalies of the aortic arch system in which the trachea and esophagus are completely encircled by connected segments of the aortic arch and its branches. Although the double aortic arch has various forms, the common defining feature is that both the left and right aortic arches are present. There is one STL file for 3D printing the whole congenital heart defect model double aortic arch with blood pool. The model is provided for distribution on Embodi3D with the permission of the author, pediatric cardiologist Dr. Matthew Bramlet, MD, and is part of the Congenital Heart Defects library. We thank Dr. Bramlet and all others who are working to help children with congenital heart problems lead normal and happy lives. It is distributed by Dr. Bramlet under the Creative Commons license Attribution-NonCommercial-NoDerivs. Please respect the terms of the licensing agreement.

    Free

  2. Just read this very interesting article. I think the article oversimplifies the situation a bit, as the system seems to be designed primarily for cardiac MR angiography and not for MRIs in general, but nonetheless, it is an impressive advance. http://news.mit.edu/2015/3-d-printed-heart-models-surgery-0917
  3. The US Food and Drug Administration (FDA) just released guidance on the use of 3D printing for medical purposes in the USA. http://threedmedprint.springeropen.com/articles/10.1186/s41205-016-0005-9 I am particularly interested in how the FDA approval applies to software used to generate models that are used for surgical planning but not diagnostic purposes? It seems, from the article, that if the purpose of the 3D printed model is merely for thinking about or planning a surgery, it is a "visual aid" and FDA approved software is not required. The technical term is a "medical image hardcopy device," examples of which are laser printers and cameras. If it is used for diagnosis, then it should be discussed with the FDA. And if use for implantable medical devices or surgical cutting guides (i.e. stuff that touches the patient), then the whole process is under FDA approval. This correlates to what the paper's first author (Matthew Di Prima from FDA) said at the 2015 Bioinformatics Festival during this talk. Key part is at 4:41. https://videocast.nih.gov/summary.asp?Live=15417&bhcp=1 Anyone have any thoughts about this?
  4. Broken bones can be immensely painful and debilitating. Broken bones account for over 6.8 million medical treatments each year at various hospitals, emergency rooms and doctor's offices across the United States. Most minor fractures can be treated using casts, braces and traction devices. Occasionally, surgeons also replace the broken or missing bone fragments using bone grafts. Grafts may be derived from the patient's own body (autografts) or from a donor (allografts). Although autografts and allografts have been in use for decades, they have several disadvantages. It is often difficult to find a compatible bone fragment. Furthermore, these implants degenerate with time, and most patients require a replacement surgery after 10 or 15 years. This surgery can worsen pain and lead to other complications, especially in the elderly. Three-dimensional Bone Grafts To overcome some of these deficiencies, researchers at University of Toronto, under the supervision of Professor Bob Pilliar, began looking for special compounds that can be used to form artificial bone grafts and fragments. They discovered calcium polyphosphate that makes up approximately 70 percent of a natural bone. Mihaela Vlasea, a mechatronic engineer at University of Waterloo, then developed an indigenous 3D printer that uses ultraviolet rays and light-reactive binding agents to fuse the calcium polyphosphate molecules into bone fragments. The implant has a porous structure that allows the real tissue to grow over time. Subsequently, the implant is broken down naturally in the patient's body. Apart from treating fractures, this technology can also be used to produce replacement joints and cartilages for arthritis patients. The porous nature of the 3-D printed grafts, however, makes them brittle and unmanageable at times. Researchers at Nottingham Trent University are working to further strengthen the bone implants by growing unique crystal structures within the bone scaffold at sub-zero temperatures. This technique may also reduce the time required to print the bone fragments. Talus Bone Surgeries Some healthcare professionals are already using 3D printing technology in patients. Dr. Mark Myerson, an orthopedic surgeon at Mercy Hospital, Baltimore, relies on 3D printing services offered by 4Web Medical to create customized ankle bones that can be implanted into the patient's feet to replace a broken ankle. He has used this technology to help patients with talus bone fractures, who tend to lose blood circulation in the area. Consequently, the bone dies and begins to crumble leading to a flat and painful ankle. 4Web Medical uses CT scans of the opposite (normal) foot to get the dimensions and the specific shape of the bone. It feeds this information into a computer and uses a 3D printer to produce a compatible implant. Dr. Myerson places these implants in the patient's ankles. The intervention has helped patients regain 50 to 75 percent of their ankle function. The field of 3D bioprinting and medical 3D printing is still in its infancy. Scientists across the globe are investing significant amount of time, money and effort to develop more efficient and cost-effective techniques. Many products are undergoing clinical trials. Three-dimensional bones will soon be accessible to millions of patients suffering from bone fractures and bone defects. Image Credit : mdmercy.com
  5. Organ transplantations and surgical reconstructions using autografts and allografts have always been challenging. Apart from the complexity of the procedure, healthcare professionals also have difficulty finding compatible donors. Autografts derived from one part of the body may not fit in completely at the new location causing instability and discomfort. As per the U.S. Department of Health and Human Services, about 22 people die each day due to a shortage of transplantable organs. Creating more awareness about organ donation is only part of the solution. Researchers have to look for other alternatives, and this is where technologies such as three-dimensional medical printing and bioprinting are making an impact. Integrated Tissue-Organ Printing System (ITOP) Millions of dollars are being invested to develop technologies that will help healthcare professionals print muscles, bones and cartilages using a printer and transplant them directly into patients. The ITOP system is a big step in that direction. It was developed by researchers at Wake Forest Institute for Regenerative Medicine. They used a special biodegradable plastic material to form the tissue shape, a water-based gel to contain the cells, and a temporary outer structure to maintain shape during the actual printing process. The scientists extracted a small part of tissue from the human body and allowed its cells to replicate in vitro before placing them in the bioprinter to generate bigger structures. Unlike other 3-D printers, the ITOP system can print large tissues with an internal latticework of valleys that allows the flow nutrients and fluids. As a result, the tissue can survive for months in a nutrient medium prior to implantation. Researchers have used this technology to develop mandible and calvarial bones, cartilages and skeletal muscles. The goal is to create more complex replacement tissues and organs to offset the shortage of transplantable body parts. Polylaprocaptone Bone Scaffolds Researchers at John Hopkins are also developing 3-D printable bone scaffolds that can be placed in the human body. Their ingredients include a biodegradable polyester, known as Polylaprocaptone, and pulverized natural bone material. Polylaprocaptone has already been approved by the Food and Drug Administration (FDA) for other clinical applications. Researchers combined it with natural bone powder and special nutritional broth for cell development. The cells were added to a 3-D printer to generate bone scaffolds, which have been successfully implanted into animal models. Researchers at John Hopkins are now looking for the perfect ratio of Polylaprocaptone and bone powder that will produce consistent results. They will subsequently test their scaffolds in humans as well. More studies are being done as we speak. Many surgeons have also started using 3-D printed tissues and bones to help their patients. In the next few years, this technology will become more accessible, affordable and effective and may change medicine forever. Sources: Photo Credit: Wake Forest Institute for Regenerative Medicine Scientists 3D Print Transplantable Human Bone
  6. Imagine an orthopedic surgeon printing customized ankle bones with a printer and implanting them into patients to help them walk again. Consider a surgeon printing reconstructive wedges for an ankle surgery in his office and using them to replace staples, screws and plates. While these scenarios may seem like science fiction, advances in 3-dimensional medical printing are turning them into reality. The human ankle is made up of 26 bones, 33 joints and almost 100 muscles. Together, these components bear a significant portion of the body weight and are exposed to a lot of wear and tear. Ankle problems, such as arthritis, can be immensely painful and debilitating. The condition impacts about 1 – 4 percent of the population, as per an article published in the 2010 edition of the journal Current Opinion in Rheumatology. Conservative treatments include medications, physical therapy and devices. If these treatments fail, the patient may require surgical interventions such as arthroscopic debridement or arthrodesis. Current Innovations Arthrodesis involves the fusion of ankle bones using screws and plates. The patients may also require bone grafts occasionally, which can get cumbersome and painful. Zimmer Biomet, a prominent name in reconstructive orthopedic industry, has created an innovative solution with 3-dimensional bioprinting technology. The company's Unite3D Bridge Fixation System consists of an “osteoconductive matrix” of biocompatible materials that mimics the ankle bones accurately and gets absorbed into the patient's body immediately. Orthopedic surgeons Dr. Greg Pomeroy of New England Foot and Ankle Specialists and Dr. John Early from Texas Orthopaedic Associates developed this system using Zimmer Biomet's proprietary OsseoTi material. The implants are available in nine different sizes to meet the needs of the patient. They also come with single-use surgical instruments. In 2014, Dr. Marvin Brown of San Antonio Orthopedic Group in Texas used a 3-dimensional printer to obtain components and appropriate instrument guides for an ankle replacement surgery. The surgeon combined a modular prosthetic called Inbone and the bioprinted components effectively to help a patient recover from severe arthritic pain and injury. After the surgical intervention, the patient was able to walk with minimal pain. The new ankle is expected to last for 10 years. Image Source: The Potential of 3D Printing in Podiatry Most experts agree that these examples only form the tip of the iceberg. Three-dimensional bioprinting has the potential to revolutionize the field of podiatry. Current technology allows scientists to print high quality human hyaline cartilage consistently, and studies have shown that these single-celled chondrocyte structures can help treat osteoarthritis routinely using joint replacement surgeries. Bioprinting can also help print autografts of the required size thereby, reducing the need for extracting tissues from donor sites. Healthcare professionals and researchers are immensely hopeful of impact that 3-D bioprinting will have on ankle conditions. More research is being done to come up with effective solutions that are affordably priced as well. Soon, complications associated with ankle surgeries may be a thing of the past. Source: What 3D Bioprinting Technology Means For Podiatry
  7. In this article published on the RSNA website, leaders in the field of Radiology cite cost and training as major barriers to widespread use of 3D printing technologies in medicine. By providing online tutorials on using free software, Embodi3D is trying to reduce these barriers and bring the benefits of 3D printing to the biomedical community. Can anybody else identify barriers to wider adoption?
  8. Brain tumors located at the base of the skull are some of the most challenging to treat, because of their proximity to the brain stem, as well as important nerves and blood vessels in the head and neck (Johns Hopkins). The brain stem maintains breathing and heartbeat, the basics of life. Tumors found here are known as “skull base tumors” based on their location, not the type of tumor. A group of doctors at Toho University Omori Medical Center in Tokyo, Japan, hope to improve surgical models for skull base tumors. 3D printed models are often made from opaque materials such as plaster, which make it difficult to visualize the essential brain structures. The doctors’ idea was to develop a surgical model where the tumor was made from a mesh structure. First they had to design the mesh. They made a series of objects with different spacing between the mesh and different mesh thickness. They made 20 trials of each structure, a total of 400 models. Once they decided which mesh provided the most transparency and structural integrity (they chose the one in the photo below), they proceeded to test the tumor models. Image Credit: Acta Neurochirurgica To make the all the models, the researchers used the Z Printer 450 from 3D systems which uses binder jetting, where layers of a plaster powder are fused with a binding agent to make the model. The models were then coated in paraffin wax to make them more durable. Once they decided on which grid to use for the tumor models, models were made from brain scans taken of four patients between 2007 and 2014. The imaging used for each patient was CT angiography (CTA) for the skull, MRI for the tumor and brainstem, and 3D digital subtraction angiography (DSA) for the blood vessels. Twelve neurosurgeons (the authors of the study) evaluated models based on the visibility of the various brain structures comparing a solid tumor, a mesh tumor, and no tumor. (see photo above) They determined that they the mesh tumor structure enabled them to both visualize the deep brain structures, and also understand the spatial relationships between those structures and the tumor. The method was limited by the physical vulnerability of the mesh and the difficulty of judging the surface of the mesh tumor compared to the solid tumor model. The authors expected improvements in 3D printing technology to enable thinner mesh as well as translucent material. Kosuke Kono et al. published a paper describing their study online two weeks ago in Acta Neurochirurgica: The European Journal of Neurosurgery.
  9. 163 downloads

    Ventricular Septal Defect or VSD is a hole in the wall separating the two lower chambers of the heart. Ventricular Septal Defect is a common heart defect that's present at birth (congenital). In normal development, the wall between the chambers closes before the fetus is born, so that by birth, oxygen-rich blood is kept from mixing with the oxygen-poor blood. When the hole does not close, it may cause higher pressure in the heart or reduced oxygen to the body. A small ventricular septal defect may cause no problems, and many small VSDs close on their own. Larger VSDs need surgical repair early in life to prevent complications. These STL files are derived from a Magnetic Resonance Imaging (MRI) of a 3 year old girl with complex perimembranous to muscular VSD with band dividing it into a large anterior component and smaller posterior component. There are 3 separate files as well as an STL file for 3D printing the whole model at once. The three STL files have been zipped and available for download. Alternatively, one STL file representing the whole model is also available for download. The three part model has holes for magnets, which can be used to connect and separate the pieces. The model is provided for distribution on Embodi3D with the permission of the author, pediatric cardiologist Dr. Matthew Bramlet, MD, and is part of the Congenital Heart Defects library. We thank Dr. Bramlet and all others who are working to help children with congenital heart problems lead normal and happy lives. It is distributed by Dr. Bramlet under the Creative Commons license Attribution-NonCommercial-NoDerivs. Please respect the terms of the licensing agreement. A US quarter is shown for scale in the images below.

    Free

  10. Cassidy, a tuxedo kitten with a white mustache and socks, lost his hind limbs from below the knee at birth. When he was found starving after nine weeks, his wounds infected with E. coli, the emergency vet recommended euthanasia. But Shelly Roche refused to give up on him. She runs the TinyKittens rescue operated out of Fort Langley, B.C., Canada, that specializes in lost causes. She nursed him back to health, with the Internet cheering him on. This video shows Cassidy walking with a leash and harness to hold up his rear end, then getting a little wheelchair and finally running around and bounding off his rear leg stumps. Cassidy as a young kitten trying his 3D printed wheelchair. Photo credit: CatChannel.com Two local high school students made him a wheelchair using their school’s 3D printer. This was not the last time 3D printing would help Cassidy. Handicapped Pets Canada also provided one that he used up until recently. Now that Cassidy has outgrown his wheelchairs, he gets around riding Roche’s Roomba. But the Roomba is only a temporary solution. Cassidy is being fitted for prosthetic leg extensions. Last week, in the first step toward receiving prosthetics, Cassidy got Botox injections to relax the muscles of his rear legs, for ongoing physical therapy. Roche said of Cassidy’s prosthetics, "I'm not sure if they use titanium or carbon fiber. I'm not sure what the end-point will be. I tell people he's going to get fancy new bionic legs." That will be up to Dr. Denis Marcellin-Little and the team at North Carolina State University working on Cassidy’s prosthetics. Marcellin-Little is an expert in custom prosthetics and physical therapy. Like a real-life Dr. House for dogs and cats, Dr. Marcellin-Little gets the most challenging cases, where existing methods cannot provide treatment, so he and an international team of collaborators develop new ones. The process for building a custom implant starts with a CT scan. Then, 3D-printed models of bones may be made. Marcellin-Little has over a decade-long collaboration with Dr. Ola Harrysson of the department of Industrial Systems and Engineering building implants. Marcellin-Little and Harrysson have invented a technique called osseointegration, where a titanium implant gets attached directly to bone via a honeycombed surface the bone grows to fill. The implant itself is made using a type of metal 3D printing called electron beam melting (EBM) where titanium powder is melted in successive layers to make the object. Several news articles have mentioned the cost of Cassidy’s care. $10,000 has been spent on Cassidy already. The implant procedures can cost up to $20,000 per leg. The procedure does not only benefit a single animal. Marcellin-Little talks of translating the technique to human patients “All the progress we make in free-form fabrication very quickly gets translated to human prosthetic research. Free-form transdermal osseointegration will cross over at some point to human patients.”
  11. Professor Noel Fitzpatrick is one of the most prominent doctors of veterinary medicine in the UK. Featured on the show The Supervet on Channel 4, Fitzpatrick performs live-saving operations for people’s beloved pets, often making use of advanced technologies like 3D printing in his procedures. Despite his skills, Fitzpatrick says whether or not to keep animals alive is a moral decision, more than a scientific assessment. He says that 3D printing and other technological advancements have made it so he can cure nearly any pet’s ailment, but that doesn’t necessarily mean he should. Fitzpatrick told recently that he and other vets have an obligation to focus on the value their services bring to the pet’s future quality of life before deciding to subject them to invasive surgeries. His veterinary practice located in Surrey has been among the first to use advanced medical techniques such as creating bionic legs for people’s pets. He also said that no matter how much money he might receive by performing complex operations, he takes the time to consider which outcome will be best for the animal before agreeing to do it. He said, “The bottom line now is that anything is possible, if you have a blood and nerve supply.” “That means that we now have a line in the sand: not what is ‘possible’ but what is ‘right.’ In the past it was just the case of if it wasn't possible, you'd move to euthanasia.” Dr. Fitzpatrick said ever since he began using 3D printed joints with living tissue as part of his procedures, he spends every day walking a moral tightrope. At the same time, he thinks animals are very deserving of the most modern medical technologies, given the role they played in drug and medical testing for human medicine historically. “They've given us all their lives for research, quite simply it's time to give something back.” The Supervet is returning to TV with a new series featuring Dr. Fitzpatrick’s treatment of Jersey, the first three-legged cat to ever have a hip replacement. Jersey lost a leg after being hit by a car. Fitzpatrick needed to create a new hip that moved in a unique way so she could balance on three legs alone. He said, “It was a sweet cat. She had a slipping kneecap and really severe hip arthritis. Most cats can manage three legs but this one couldn’t." Jersey’s medications weren’t helping her, which is why her owner wanted to pursue a compete hip replacement. Dr. Fitzpatrick said, “It would have been easy to put her to sleep. Was that the right choice? The other options for pain control were suboptimal. But it worked.” Jersey’s story is just one of many unique cases featured on The Supervet, often involving novel medical solutions with the help of 3D printing. Image Credits: DailyMail, Supervet
  12. The rugged, replaceable, customizable, lightweight, and low cost nature of 3D printing technology make it ideal to make prosthetics for children, who quickly outgrow and/or wear them out. E-nable is an online community of volunteers, parents, makers, and medical professionals committed to providing 3D printed prosthetics to children who need them. Dr. Gloria Gogola, a pediatric hand surgeon at Shriners Hospitals for Children-Houston collaborated with E-nable and volunteer bioengineering students and faculty from Rice University to help children and parents build their own prosthetics. She published a paper along with two other researchers last week summarizing their work in The Journal of Hand Surgery to explain the advantages of using 3D printing for children’s prosthetics to other surgeons. At almost a hundredth of the cost of traditional prosthetics, for $50 as opposed to $4,000, they are comparable to the price of a pair of shoes. A recent Upworthy story told the “origin story” of E-nable. Blogger cdmalcolm gave an overview of E-nable’s charity work in a post for Embodi3D about a year ago. Since then, membership in the E-nable Google+ group has doubled, reaching over 8,000 members as of this publication. They have brought hands to 40 countries around the world, providing them for free to children in need. The recent story of four-year-old Anthony from Chile posted on enablingthefuture.org’s blog illustrates the process each child follows to get a new hand. Because Anthony does not have a wrist, the joint powering most of E-nable’s devices, he needed an elbow actuated device. Anthony’s mother took his measurements and decided with the volunteers’ help that the Team Unlimbited Arm was the best fit. Parents and children can also choose to help design, customize, print, and build the hands themselves. According to Jon Schull, the founder of E-nable, they take about three hours to print, and two hours to build, for $5 worth of raw material. Two big repositories for free designs are available from the National Institutes of Health and Enablingthefuture.org. Volunteers helped print the arm and gave it to Anthony for a trial period to test the fit. They realized a he needed a thermoplastic cast for a comfortable, snug fit on his small arm. Volunteer Francisco Nilo and Anthony sharing an obligatory fistbump. Photo credit: ProHand3D and Enablingthefuture.org Coordinating was challenging as Anthony lived in Valparaiso, on the Pacific coast, a two hour drive northwest of Santiago, where the volunteers and 3D printing company, ProHand3D, were located. Finally, local Santiago tattoo artist and illustrator Cesar Castillo painted the device with Spider Man designs, Anthony’s favorite superhero. Final Spider-Man arm. Photo credit: ProHand3D and Enablingthefuture.org To continue with more fun themes, in January of this year E-nable began having design contests every month. This month’s theme is Steampunk and the winner will receive copperfill and bronzefill filament coils, social media fame, and have their device displayed at the Maker Faire in Nantes, France. Past themes included Star Wars and task-specific devices. Each hand is as unique as its child owner. Chile volunteer Francisco Nilo said of Anthony, “His mom shared with us that since Anthony received his Spiderman arm, he uses it all the time, even for sleeping! We know no one uses these devices all day long, but perhaps the superhero design has influenced him just a bit!” People interested in volunteering for E-nable or those interested in procuring a prosthetic hand for a child may visit http://enablingthefuture.org/ and contact letsgetstarted@enablingthefuture.org
  13. Researchers from the Department of Biology at the University of Oregon, Eugene, have come up with an innovative use of 3D printing to study the biology of flower mimicry. One of their models was the “Dracula Orchid” (Dracula effleurii). Despite its vampiric name, the flower is not carnivorous. They attract flies as pollinators, not food. Dracula here means “little dragon,” referring to their appearance. Bitty Roy, the principle investigator on the study, described the pollination process: "What the orchid wants the fly to do when it arrives is to crawl into the column, whereupon the orchid sticks a pollinium (mass of pollen) onto the fly so that the fly can't possibly get it off. The fly then goes to another orchid, which then pulls it off." The researchers travelled to Ecuador, South America, to study the orchids and their fly pollinators in the wild. Roy also put the study into a larger evolutionary and ecological context: "Mimicry is one of the best examples of natural selection that we have," she said. "How mimicry evolves is a big question in evolutionary biology. In this case, there are about 150 species of these orchids. How are they pollinated? What sorts of connections are there? It's a case where these orchids plug into an entire endangered system. This work was done in the last unlogged watershed in western Ecuador, where cloud forests are disappearing at an alarming rate." Roy and her research team wanted to know whether the different visual parts of the flower, its scent, or a combination of both, were responsible for attracting the flies. They presented their results in a paper published last month in The New Phytologist. "Dracula orchids look and smell like mushrooms. We wanted to understand what it is about the flowers that is attractive to these mushroom-visiting flies," said Tobias Policha, the lead author of the paper. The researchers designed their study to separate out the different parts of the flower: the triangular outer part (the calyx) and the inner pouch-shaped part (the labellum). From upper left, counter-clockwise: completely artificial flower, completely real flower; real calyx, artificial labellum; artificial calyx, real labellum. Photo credit: Aleah Davis To manufacture the artificial flowers, the team collaborated with Melinda Barnadas, co-owner of Magpie Studios, an arts studio expert in creating scientific art and models for museums. The process to make the artificial flowers had several steps: casting the real flowers in impression molds, making a positive plaster cast of the molds, digitally scanning the cast, then 3D printing the files using a Zcorp Spectrum 510 printer. Finally the 3D-printed molds served to cast the flowers from medical grade, scentless silicon. The color was done using dye encapsulated in silicon, so the flies couldn’t smell it. Real flower, on left, and a series of artificial flowers, created from 3D printed molds, in decreasing order of fly attractiveness. Image from research paper. As a result of this study the researchers found that the flies were most attracted to the scented labellum. They hope their idea will be used in other studies where genetically modifiable models are not available. Quotes from researchers pulled from the press release at EurekaAlert!
  14. 145 downloads

    Chronic kidney disease is the progressive loss of kidney function over a period of months or years. It is estimated that chronic kidney disease affects five to ten percent of world population. Chronic kidney disease is also known as chronic renal disease and affects about 26 million American adults and millions of others are at increased risk. Risk factors for chronic kidney disease include diabetes and high blood pressure. As kidney disease gets worse, wastes build to high levels in blood and make people feel sick. They may develop complications like high blood pressure, anemia, weak bones, poor nutritional health and nerve damage. Also, kidney disease increases the risk of having heart and blood vessel disease. These problems may happen slowly over a long period of time. Chronic kidney disease may be caused by diabetes, high blood pressure and other disorders. Early detection and treatment can often keep chronic kidney disease from getting worse.Glomerular filtration rate (GFR) is the best test to measure kidney function and GFR is used to determine the stage of kidney disease. These kidney models are provided for distribution on embodi3D.com with the permission of the creators Dr. Beth Ripley and Dr. Tatiana. These models are part of the Top 10 Killers 3D printable disease library. James Weaver and Ahmed Hosny also contributed to the project. We thank everyone involved for their contributions to embodi3d.com and their advocacy for better health and education through 3D printing. There are several kidney STL files to download. One set of files is for bioprinting a normal kidney. The other set of files is for 3D printing a model representing chronic kidney disease including files for abnormal ureters and cortex. The files have been zipped to save space and speed up downloads. These files are distributed under the Creative Commons license Attribution-NonCommercial-NoDerivs. Please respect the terms of the licensing agreement.

    Free

  15. This week cdmalcolm posted a great article here at Embodi3d.com on how 3D-printed replicas of patient’s organs are helping surgeons plan for complicated operations. Today I'd like to supplement this topic by talking about the advances 3D printing can bring to medical education, specifically by recreating human models for students to study and dissect. Currently, the golden standard for teaching medical students the anatomy (overall structure) of the human body involves dissecting and observing cadavers – recently deceased humans who have given their bodies to science. However, obtaining and storing these bodies can be difficult for a number of reasons. For example, many cultural and religious beliefs preclude people from donating their bodies, and even in countries with strong donation programs bodies with rare diseases (by their very definition) are hard to find. Even when sufficient cadavers are donated, the process of preserving them to prevent natural decomposition can be costly. New technology comprising a mixed approach of 3D printing and traditional manufacturing can solve many of these problems by recreating accurate and numerous replicas of human anatomy with minimal expense. A recent publication in the January/Februrary edition of the journal “Anatomical Sciences Education” highlighted a prototype for this technology; the team from The University College Dublin in Ireland were able to recreate a portion of the hip, with 3D-printed bone and blood vessels surrounded by a flesh-like filler and covered in a synthetic skin. On top of this, they were able to connect a pump to the blood vessels to mimic the typical human circulatory system. The result wasn't fancy - the components were placed in a Tupperware container with holes for the tubing - but it had most of the necessary components for students to learn, and more importantly, obtain valuable practical experience. The advantage of using 3D printing for these models is that they can be changed to reflect the anatomy of specific diseases. For example, atherosclerosis occurs when blood vessels narrow, and it is an important factor in heart disease. In the prototype above, the team were able to 3D-print replicas of blood vessels from a healthy patient, and one with atherosclerosis - the vessels with atherosclerosis were a lot thicker, and students were able to assess this using ultrasound. The students were also able to perform basic techniques to locate the vessels via syringe, similar to how they may be required to set up an IV drip. And since the models only need to mimic the qualities of human organs rather than making functional tissue (see my previous article on the challenges of this), the models can be made relatively simply, and from materials that do not degrade over time like human flesh does. It might seem like a reconstruction of the human body would never be able to replicate the experience of learning from a true human body, however the results of the study above and previous work by The Centre for Human Anatomy Education in Australia showed that 3D printed models are just as good as cadavers for teaching students the principles of anatomy. And thus the future of manufactured lifelike bodies for teaching seems bright - indeed, one could imagine that many trending technologies could be integrated with these models to provide teaching experiences that surpass the current standard delivered by cadavers. Digital sensors are rapidly becoming cheaper and more ubiquitous in technology, and these could be incorporated into anatomical models to provide feedback to students during practical tasks. Virtual reality (VR) and augmented reality (AR) are also trending with many potential application for medicine. Perhaps in the future, manufactured human anatomical models will be integrated with AR, in a way that replicates the experience of operating on real-life patients. And so, 3D printing technology seems poised to replace the long-standing use of cadavers for medical education, and soon many medical students will be able to sigh with relief at not having to prepare themselves to touch and dissect decomposing, smelly bodies. The inexpensive production of realistic bodies will give students better access to practical hands-on education, better preparing them for their eventual roles dealing with real patients. Image Credits: Simulab The Verge Pacific Vascular
  16. I just finished a 3D print of a rather large AAA. I think it turned out alright. Any thoughts? Anyone else doing work like this?
  17. Many doctors these days are now including 3D printing as part of their many surgical procedures. Dr. Jamie Levine from NYU Langone noted that there is a paradigm shift when it comes to doing surgical procedure in terms of using and relying on 3D printing. A lot of hospitals all over the United States have already embraced 3D printing to create tools, models or craft tissues used for surgery. One of the hospitals that are leading the paradigm shift is the Institute for Reconstructive Plastic Surgery at NYU Langone. The surgeons from NYU Langone use special printers to create tools and 3D models that can save doctors from performing long and expensive surgeries. In fact, the hospital is able to save $20,000 to $30,000 for every reconstruction that the do. The use of 3D printing in medical technology is very promising. In fact, the Food and Drug Administration has already approved the creation of 3D printed pills and vertebrae. There are also many researchers all over the world working with 3D printed organs to be used in organ transplantation. Although medical-grade 3D printers still remain expensive, they can make infinite types of objects like surgical tools, anatomical models and other devices. Fortunately, there are now many companies that are developing cost-effective printers thus the cost is targeted to go down in the future. There is a wide potential for innovation when it comes to using the 3D printing technology. With this technology, it is no wonder if many hospitals all over the world will rely on 3D printing technology to treat different diseases.
  18. Just this past weekend I gave a presentation on uses of 3D printing in interventional radiology at the Western Angiographic and Interventional Society meeting in Vancouver, BC. It was very well received. In my opinion, there has not been enough work on applications in 3D printing for vascular procedures, such as those done in IR. Is anyone else involved in 3D printing for vascular applications: IR, vascular surgery, neurointervention, etc?
  19. From personalized replacement body parts to safer surgeries, 3D printing is revolutionizing medicine. Dr. Frank Rybicki, an American expert in the field, tells Andrew Duffy what the future holds ­— and why he’s set up shop in Ottawa. http://ottawacitizen.com/news/local-news/the-3d-dreams-of-dr-frank-rybicki
  20. Came across this while looking for info for someone else. Really good guide to history, materials, methods, etc. http://3dprintingindustry.com/3d-printing-basics-free-beginners-guide/ Enjoy!!
  21. From the album: ebaumel Blog images

    3D printed model of the carpal bones in a patient with a scaphoid wiast fracture. Derived from CT data.

    © Copyright ©2015 Eric M. Baumel, MD

  22. From the album: ebaumel Blog images

    3D printed model of a section of a kidney with a renal mass, from MRI data.

    © Copyright ©2015 Eric M. Baumel, MD

  23. From the album: ebaumel Blog images

    3D printed model of a kidney with a renal mass, from MRI data.

    © Copyright ©2015 Eric M. Baumel, MD

  24. http://www.plasticstoday.com/articles/adidas-unveils-the-ultimate-3d-printed-personalized-shoe-design151025?cid=nl.plas08.20151027 Interesting use of 3d printing. Be cool if they could make this for other sports - not just for running.
  25. 86 downloads

    This 3D printable jaw and maxilla was created from a CT scan. Files are available in both STL and Blender formats. This model is shared under the Creative Commons Attribution license and was created by Prevue Medical and posted here.

    Free

×
×
  • Create New...