Jump to content

Search the Community

Showing results for tags '3D Printing'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Blogs

  • Embodi3d Test Blog
  • 3D Printing in Medicine
  • Cool Medical 3D-Printing
  • 3D Bio Printing by Paige Anne Carter
  • SSchoppert's Blog
  • Additive Manufacturing in Medicine
  • biomedical 3D printing
  • Bryce's Blog
  • Chris Leggett
  • 3D Models Help Improve Surgical Precision, Reduce Operating Time
  • Desktop 3D Printing in Medical Imaging
  • 3D Printing: Radiology corner
  • The Embodi3D.com Blog
  • descobar3d's Blog
  • 3D Printing in Anthropology
  • Learn to 3D Print: Basic Tools from software to printers
  • 3D printing for bio-medicine
  • 3D Biomedical Printing - by Jacob M.
  • Valchanov's Blog
  • Deirdre_Manion-Fischer's Blog
  • Matt Johnson's Biomedical 3D Printing Blog
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Devarsh Vyas's Biomedical 3D Printing Blogs
  • Mike at Medical Models
  • Best embodi3d.com Medical and Anatomic Files

Forums

  • Biomedical 3D Printing
    • Hardware and 3D Printers
    • democratiz3D®
    • Software
    • Clinical applications
    • 3D Printable Models
    • Medical Imaging: CT, MRI, US
    • Science and Research
    • News and Trending Topics
    • Education, Conferences, Meetings, Events
  • General
    • Announcements
    • Questions and Answers
    • Suggestions and Feedback
    • Member Lounge (members only)
  • Classifieds, Goods and Services
    • General Classifieds - members post free
    • Services needed
    • Services offered
    • Stuff for sale/needed
    • Post a Job
    • Looking for work - visible only to members

Categories

  • democratiz3D® Processing
  • Bones
    • Skull and Head
    • Dental, Orthodontic, Maxillofacial
    • Spine and Pelvis
    • Extremity, Upper (Arm)
    • Extremity, Lower (Leg)
    • Thorax and Ribs
    • Whole body
    • Skeletal tumors, fractures and bony pathology
  • Muscles
    • Head and neck muscles
    • Extremity, Lower (Leg) Muscles
    • Extremity, Upper (Arm) Muscles
    • Thorax and Ribs Muscles
    • Abdomen and Pelvis muscles
    • Whole body Muscles
    • Muscular tumors and sarcomas
  • Cardiac and Vascular
    • Heart
    • Congenital Heart Defects
    • Aorta
    • Mesenteric and abdominal arteries
    • Veins
  • Organs of the Body
    • Brain and nervous system
    • Kidneys
    • Lungs
    • Liver
    • Other organs
  • Skin
  • Veterinary
    • Dogs
    • Cats
    • Other
  • Science and Research
    • Paleontology
    • Anthropology
    • Misc Research
  • Miscellaneous
    • Formlabs
  • Medical CT Scan Files
    • Skull, Head, and Neck CTs
    • Dental, Orthodontic, Maxillofacial CTs
    • Thorax and Ribs CTs
    • Abdomen and Pelvis CTs
    • Extremity, Upper (Arm) CTs
    • Extremity, Lower (Leg) CTs
    • Spine CTs
    • Whole Body CTs
    • MRIs
    • Ultrasound
    • Veterinary/Animals
    • Other

Product Groups

  • Premium Services
  • Physical Print Quotes

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Name


Secondary Email Address


Interests

Found 218 results

  1. Since the 1980s, three-dimensional (3D) medical printing and bioprinting technologies have been influencing almost every aspect of the human life. Most people are, however, surprised at the kind of impact additive printing is having in the field of medicine. The technology is helping diagnose and treat complex illnesses ranging from cancer and heart disease to arthritis and infections. In recent months, several innovative 3D tools have also been created to overcome obesity. More than two-thirds of adults in the United States are obese or overweight. The prevalence of obesity has doubled in children and quadrupled in adolescents in the last 30 years. This has increased the risk of Type II diabetes, cancer and other serious conditions in men and women of all ages and abilities. Both government agencies and nonprofit organizations have spent millions of dollars creating awareness about the issue. Consequently, many people now understand the importance of healthy diet and exercise. They, however, lack resources that will help them accomplish such goals. Physicians are also looking for tools that will assist them in treating morbid obesity more effectively. Thankfully, 3D printing technology is offering some novel solutions to everyone, and researchers believe that it will ultimately bolster the efforts aimed at reducing weight and enhancing fitness levels. Liposuction Tools BioSculpture Technology, under the leadership of New York Downtown Hospitals and the Presbyterian New York affiliated plastic surgeon Robert Cucin, is relying on 3D printing to develop an innovative line of surgical instruments to perform liposuction. The technology is also allowing surgeons to create exact replicas of the patient’s organs and practice the procedure before the actual intervention. Together, these products are making liposuction more accessible and safe. Liposuction is an invasive procedure that involves removal of excess fat from various parts of the body and is commonly used treat obesity. Close to 400,000 people underwent this surgery in 2015, as per the American Society of Aesthetic Plastic Surgery. Tracking Devices Exertion Games Lab in Melbourne, Australia, has created a simple device that can print 3D models of the user’s physical activity time, sleep time, and heart rate during the week to motivate and encourage them to set new challenges. Unlike smartphones and pedometers, the Exertion Games Lab device caters to the needs of children as it helps them grasp complex fitness-related information with ease. Children can also hold these models in their hands and share their enthusiasm with their peers. The Potential These examples just form the tip of the iceberg. The impact of 3D printing on the fight against obesity is expected to go beyond creating mechanical devices and surgical instruments. Tamara Nair, a Research Fellow at the Centre for Non-traditional Security (NTS) Studies in the S. Rajaratnam School of International Studies (RSIS), believes that the technology can also be used to create food products with higher nutritional value. Such foods may help obese and overweight individuals manage calorie intake according to their activity level. The 3D printing technology can also make nutritious foods more palatable, says Nair. These potential benefits may appear like science fiction to some readers. Nonetheless, if the recent advances in the 3D printing and bioprinting technologies are anything to go by, they may turn into reality very soon.
  2. Hello. I own a 3D Printing Service Bureau (imtyris.com). The out put of our 3D printer is a paper model, either plain white, or in millions of colors. I'm looking for someone to work with to develop CT or MRI data into a full color paper model. Dave Jahnz Imtyris 858 354-4200
  3. Examples of historical medical 3D printing on display at RSNA. The green skull is from 1985! We've come a long way since then.
  4. What kind of 3D printers work best for printing from CT scans? In terms of resolution, what have others experienced and what sort of resolutions are needed for the models to actually be used for surgical planning?
  5. I was wondering if anybody has found a 3D printing material that works well for fracture studies. I am aware of Sawbones, but would like to explore the possibility of using CT scans to generate 3D printed bones of different size/age/sex for fracture/trauma studies. Thanks! Terrie
  6. Version 1.0.0

    10 downloads

    This 3D printable STL file contains a model of the torso and arms was derived from a real medical CT scan in high detail. This model was created using the embodi3D free online 3D model creation service. QIN-HN-01-0003

    Free

  7. Hello, Just found this website today and wanted to mention my related business: http://www.med-mod.com/ I have years of experience in both medical imaging and 3D printing. Check out some projects on my website or contact me directly with any projects you you would like help with. MikeF@med-mod.com Mike
  8. Significant thinning or loss of hair can have a detrimental impact on the individual’s overall quality of life. Men and women with unhealthy hair often suffer from emotional issues and low self-esteem. The condition may also be indicative of an underlying medical problem. As per the American Hair Loss Association, two-thirds of American men experience some hair loss by the age of 35 and about 80 percent of them have significant thinning of hair by the age of 50. Approximately half of women over the age of 50 also suffer from serious hair loss. Apart from genetics and lifestyle, certain medications and infections can also contribute to the condition. You will find a variety of hair loss treatments in the market today ranging from herbal products to surgical interventions. However, none of these solutions have succeeded in producing dramatic results in a consistent manner. Researchers are, therefore, looking at three-dimensional (3D) medical printing and bioprinting to find products that really work, and their efforts seem to be paying off. 3D Printing Technology to Create Cranial and Hair Implants AdviHair, a subsidiary of London-based AdviCorp PlC, has developed a unique set of cranial prosthetics known as the CNC Hair Replacement System. The company uses 3D printing technology to create implants that conform to the patient’s scalp measurement and skin color. The product can help conceal partial or full scalp baldness associated with Alopecia. Once the prosthetic scalp is placed in position, it behaves like regular hair. You can swim, wash and style it the way you want. The product is expected to benefit more than 6.8 million Americans suffering from Alopecia, an autoimmune disorder that occurs when the patient’s immune system destroys his own hair follicles. The prosthetics are ideal for individuals who cannot undergo transplantation or other Alopecia treatments. Cosmetic giant L’ Oreal has collaborated with French bioprinting company Poietis to print hair follicles that will enhance their understanding of hair biology. The process involves creation of a digital map that indicates the exact position of the living cells and other tissue fragments. The digital map is used to generate instructions for the printing process. A pulsing laser bounces off a mirror through a lens and knocks one micro-droplet of the bio-ink into its position. Approximately 10,000 such droplets are deposited each second. L’Oreal is hoping to use this technology to create products that will treat and prevent hair loss at a realistic price. Improved 3D Printing Software for Hair Implants Although 3D printed cranial prosthetics and hair implants are gaining popularity, many of them take several hours to print. Researchers at Massachusetts Institute of Technology’s Media Lab are, therefore, working on a software platform called Cilllia that allows users to print hair-like structures within minutes. Additionally, researchers at the institute are looking beyond the aesthetics to explore other major functions of the follicles including adhesion, sensing, thermal protection and actuation. Hair loss can be stressful and overwhelming, and the treatments can be expensive. Many patients experience poor results in spite of their best efforts. Scientists are now using 3D printing to overcome the drawbacks associated with conventional treatments, and their recent success is offering hope to the millions of hair loss sufferers across the globe.
  9. The three-dimensional (3D) medical printing and bioprinting industry is evolving at a rapid pace as 3D printers continue to move beyond research labs into commercial manufacturing facilities and hospitals. The printers are being used to create anatomical models, customized implants and even body parts that help treat, manage and prevent complex illnesses and injuries. The technology has contributed to the success several challenging surgical interventions in the recent times. Three-dimensional Printing Systems While scientists are using 3D printers for a variety of purposes, most physicians are relying on them to create patient-specific models of targeted organs and tissues. Healthcare professionals obtain accurate dimensions of the patient’s body parts from radiological images and feed the information into a computer to print exact replicas of the organs. These models help the surgeons assess the abnormality with precision and practice the surgery before the actual procedure. Several consumer-friendly 3D printing systems have been created to meet these needs. Belgium-based Materialise offers Mimics inPrint system that allows physicians to directly import patient images from hospital PACS and use them for 3D printing. The product comes with DICOM compatibility that supports all types of imaging machines. The semi-automated segmentation and editing tools within the printer’s software system ensure error-free printing and enhanced communication. Materialise sets up the entire system and trains the hospital staff to operate it efficiently. Stratasys Inc. also offers additive printing technology to hospitals across the globe. It has the widest variety of materials ranging from clear, rubberlike and biocompatible photopolymers to rigid and flexible composite materials in over 360,000 colors. The Medical Innovation Series from Stratsys has been created for physicians, medical device designers, clinical educators and other professionals in the healthcare industry. Success Stories Twelve National Health System (NHS) hospitals in the United Kingdom are relying on Stratsys printers to create models that allow surgeons to analyze patients’ condition, test implants and practice surgical interventions for better outcomes. Most popular 3D models at NHS hospitals include jaw bones for facial reconstruction surgeries, hip models for hip replacements, forearms for repairing deformed bones, and cranial plastics for fixing holes in a person’s skull. Doctors Without Borders, the Italian humanitarian organization, is also using 3D printed replicas of hospital models to setup new ventures in remote areas of the world. The technology allows physicians to have a realistic experience and thereby, improve patient care. Several other healthcare facilities are also using additive printing technology for increased efficiency. Physicians at Hong Kong’s Queen Elizabeth Hospital used 3D printing technology to help a 77-year-old woman suffering from two damaged valves. The patient had already undergone three open heart surgeries and needed a complex fourth intervention. The 3D printed model helped the doctors complete the surgery in just four hours. In another case, surgeons at Children’s Hospital in Colorado and engineers at Mighty Oak Medical created a 3D model of a patient’s spine to rehearse the surgery. The physicians also used additive printing technology to print customized brackets to treat the patient’s scoliosis. These success stories are inspiring other hospitals to install 3D printers at their facilities. They would, however, require expertise to handle the printer and tools to eventually use the 3D model for clinical purposes. Several facilities are incorporating 3D printing training programs to build knowledge within the institution and to lower the lead times for the actual procedure. While the initial investment may appear significant, most experts agree that 3D printing technology can be a game changer as it can help physicians improve clinical outcomes and reduce costs associated with complicated surgical interventions.
  10. Dear Embodi3D Members, We are excited today to announce Imag3D -- the world's first one-click CT scan-to-medical model creation service. No longer will you have to struggle with expensive or difficult to use software to make 3D printable models. With Imag3D, just upload your CT scan, fill out a few basic parameters, and click Submit. Within 10 or 15 minutes or so you should receive an email that your model is finished and ready to download. Your model will be manifold (error free) and ready for 3D printing. If you want to share your model with the community, you can do so with a click. Imag3D is free for Embodi3D members. Right now only the bone making module is active. Look for tutorials and additional information in the coming weeks. Imag3D takes medical 3D printing from something that was difficult, expensive, and time consuming and makes it quick, easy, and free. Click here to get started. Thank you for supporting us as we try to bring medical 3D printing to the masses! Sincerely, Dr. Mike and the Embodi3D team
  11. Dear Embodi3D Members, We are excited today to announce democratiz3D -- the world's first one-click CT scan-to-medical model creation service. No longer will you have to struggle with expensive or difficult to use software to make 3D printable models. With democratiz3D, just upload your CT scan, fill out a few basic parameters, and click Submit. Within 10 or 15 minutes or so you should receive an email that your model is finished and ready to download. Your model will be manifold (error free) and ready for 3D printing. If you want to share your model with the community, you can do so with a click. democratiz3D is free for Embodi3D members. Right now only the bone making module is active. Look for tutorials and additional information in the coming weeks. democratiz3D takes medical 3D printing from something that was difficult, expensive, and time consuming and makes it quick, easy, and free. Click here to get started. Thank you for supporting us as we try to bring medical 3D printing to the masses! Sincerely, Dr. Mike and the Embodi3D team
  12. Advances in science and technology are helping pharmaceutical companies and biotech giants to come up with novel molecules that may help treat serious and life-threatening conditions such as cancer, heart disease, and Alzheimer’s disease. However, bringing a new drug to the market can get complex and exhaustive. While most companies pass through the initial stages of drug development with ease, they face a lot of challenges during pre-clinical and clinical trials. Recent numbers reveal that only one in 5,000 drugs become accessible to patients. The biopharmaceutical industry spends over $31.3 billion on research and development each year. They also face a lot of ethical questions related to animal testing. Nonetheless, this scenario may soon change as additive printing technology becomes more accessible and dependable. Additive printing, also known as three-dimensional (3D) printing, involves deposition of desired materials on substrates to obtain 3D objects with specific dimensions and characteristics. Many different types of 3D printers are available in the market. Some machines help the user print mechanical and non-living objects. Others can print living tissues and cells when relevant biomaterials are added in controlled environments. Researchers across the globe have already succeeded in printing complex tissue fragments and even small organs such as ears using 3D printers. 3D Printed Systems for Drug Testing Organovo, a leader in 3D printing technology, has created multicellular, dynamic and functional 3D human tissue models for research and pre-clinical testing. As per the company’s website, the printed tissue will remain viable in vitro for a significant period of time while exhibiting all the structural and functional features of the actual tissue. Pharmaceutical companies can use these fragments to study the impact of new drugs on human cells and to predict the final outcome with greater accuracy. Organovo claims that its exVive3D will help researchers “assess biochemical, genomic, proteomic, and unique histologic endpoints.” Nano3D BioSciences, a Texas-based startup, has collaborated with AstraZeneca and LC Sciences to develop a cell-based assay system to assess the effects of a panel of vasodilating and vasoconstricting compounds. The company hopes that the assay will soon become a standard in toxicity testing and in the development of cardiovascular drugs. Similarly, a Canadian company, Aspect Biosystems, allows researchers to create customized tissue fragments for drug testing. The researchers will place specific cells in a hydrogel and print tissue fragments that are allowed to grow in an incubator until they achieve the desired dimensions. The components will resemble the target tissue in structure and function. Researchers at University of California, San Diego, have printed tissue fragments that closely mimic the human liver. According to Shaochen Chen, a NanoEngineering professor at the University, most companies spend 12 years and about $1.8 billion to create one FDA-approved drug. Their 3D printed liver tissue can help companies to perform pilot studies with minimal effort instead of waiting for animal testing or clinical trials, and thereby save millions of dollars. Benefits Apart from making pre-clinical trials more accessible and efficacious, 3D printed tissues also help drug companies overcome ethical issues associated with animal testing. Most researchers agree that animal testing is expensive, time-consuming and often inhumane. The animals require a lot of care, and this limits the number of tests that can be performed at a time. Additionally, results obtained from animal testing may not correlate with actual results in humans. The 3D printed tissue fragments help overcome such obstacles and may eventually allow drug companies to simplify research and development. In the long run, it may also help reduce costs and make therapeutics more accessible and effective for everyone. Sources: http://thenextweb.com/insider/2016/03/29/3d-printing-changes-pharmaceutical-world-forever/#gref http://eandt.theiet.org/news/2016/aug/3d-bioprinting.cfm
  13. Within the past few years, interest in 3D printing and its medical applications has been growing exponentially. 3D printed models have already been used to provide unparalleled pre-surgical planning in complex surgeries such as conjoined twin separation and face transplantation, as well as more common procedures such as fracture fixations and joint replacements. However, the majority of health care providers and recipients are still unaware of this technology and its utility. My hope with this blog is to provide a basic overview of 3D printing and its applications in medicine by answering some of the frequently raised questions. Stay tuned for future blogs where I will attempt to address specific topics in detail! What is 3D printing? 3D printing is a process of creating 3 dimensional objects from a digital file by using a 3D printer. In the field of medicine, the digital files are comprised of 2 dimensional CT or MR images. 3D printers do not directly recognize these digital files and post processing steps are required to convert these files into a format that is readable by 3D printers. The printer then deposits various materials layer by layer to build a 3 dimensional object. What are the applications of 3D printing in medicine? 3D models have already been used for presurgical planning in numerous subspecialties including maxillofacial and craniofacial surgery, orthopedic surgery, neurosurgery, cardiovascular surgery, pediatrics and dentistry. Models can also been used to design implants and prosthesis that are customized to each patient. In the field of radiation oncology, 3D models can be used for radiotherapy planning of optimal positioning of radiation beam and creation of personally designed radiation shields. 3D models are also proving to be superb educational tools for teaching anatomy, pathology and surgical techniques. Bioprinting, which involves printing of live cells and viable tissues that can potentially be implanted into human beings is currently an active filed of research. What are the benefits of 3D printed models that have already been reported? Currently, 3D printed models are predominantly utilized by surgeons. Preoperatively these models improve diagnosis and evaluation of the complexity of the procedure thereby allowing selection of optimal, patient-specific treatment strategy. The models can be used to plan every step of a complex procedure including surgical point of entry, incision size, precise screw length and trajectory. The models can also serve as a cutting guide for resection and as a template for preoperative bending of reconstruction hardware that would fit the specific patient anatomy perfectly. As a result of this accurate preoperative simulation and preparation, 3D models result in reduced actual operating time and cost associated with the use of surgical rooms. The time that the patient has to remain under general anesthesia, amount of blood loss and other potential complications are subsequently minimized. Shortened hospital stay and decreased need for follow up procedures have also been reported. 3D printed models allow patients who typically don’t have years of medical training, to visualize and better understand the planned procedure and make it easier for surgeons to obtain informed consents from their patients. What is the purpose of printing models if 3D images can be viewed on a computer screen? Although a 3 dimensional volume rendered digital models can be created, these digital models are still viewed on a 2 dimensional computer screen, which does not provide the same sensory input as holding a physical model in hand. Surgeons that have used the models report the additional tactile sensory input gained by holding the models and the ability to rotate and view the models from any direction in space greatly enhances their spatial perception of anatomic relationships between adjacent structures. Additionally the models provide the added benefits mentioned above such as serving as a cutting guide and template for pre-surgical bending of reconstruction plates, which cannot be achieved unless these models are printed into tangible objects. In summary, it is hard to imagine all the ways this technology will impact patient care, but judging from what has already been achieved within a very short period of time, 3D printing will certainly revolutionize the healthcare industry for the better. Leave a comment or question below regarding topics you would like addressed on the next blog! Tatiana Kelil, MD Image credit: Healio.com/orthopedics; John Robert Honiball (University of Stellenbosch).
  14. Purpose of this blog: To create a forum where members of the 3D medical printing community can share problems, solutions and practical advice pertaining to all aspects of the 3D printing pipeline. Featured problem: Setting up a new printer Featured printer: Printrbot Metal Plus Printing type: Fused deposition modeling Theme: Don’t put the cart in front of the horse Translation: don’t try to print before you’ve set up the printer If you are at all like me, you are impatient. When your new printer arrives, you want to rip open the packaging, set the printer on the counter, plug it in and hit “print”. If this sounds like you, keep reading. This first blog is a cautionary tale. Lesson 1: Make sure that your printer is properly calibrated. 1. Level, Level, Level While the printer may come “pre-calibrated,” it is always a safe bet to double-check that nothing untoward has happened during shipment. The printing bed needs to be level in relation to the path of the extruder, and therefore both the bed and the extruder railing should be checked and adjusted if not leveled. The more level you can get the print bed with respect to the extruder, the easier your life will be for all of the following steps. There are many reports of warped print beds on the internet; e.g. some of the printrbot simple models seem to have a dip in the center of the print bed. Using a straight edge rather than just a level may help you detect this type of issue. Getting that print bed straight by whatever means necessary is advised. 2. Determine your negative z-value, or get ready to throw out a lot of failed prints You need to determine the optimal distance that the hot end of the extruder should be from the print bed when printing. The number you are determining is the negative z value. Picking your negative z-value is sort of like Goldilocks and the 3 bears: If the negative Z value is too high, your print will look stringy. If the negative Z value is too low, your print will look smashed. So you want it Just Right. To set the negative z value, you need to modify the G-code. G-code? At this moment, let me digress for those not familiar with G-code. G-code is the language that the printing software uses to communicate with the printer. G-code is, in essence, directions given to the printer on how to drive the motors and turn the heaters on and off. This is akin to postscript for laser printers. Different slicing programs will create different g-code; some will do it better than others, depending on how optimized they are for a given printer, etc. This is also why some slicing programs may result in a faster print, based on more optimized/efficient g-code. tip: always enter G code in CAPITAL LETTERS For the Printrbot, you enter the G-code that assigns the negative z-value in Repetier. Go to the manual control tab on the right side of the screen, make sure your printer is connected and then type the following in the G-code line: M501 (shows you what the current X, Y and Z offsets are; output on the bottom of screen) M212 Z0 (The number you type after Z is the negative z value that you are assigning. Start with 0 and see where you land, then go negative in small increments e.g. -0.1 to move closer to the print bed, printing a simple object each time and seeing how it turns out. Positive numbers will move the extruder farther from the bed.) M500 (save) 3. Auto-level before every print. Your printing software should instruct the printer to auto-level before any print. In addition to the basic leveling described in 1., there is an “auto leveling” check designed to determine if the print bed is tilted in any direction. Also referred to as “z probing”, this step is necessary because the quality and success of your print depends on any discrepancies in the distance between the hot end of the extruder and the print bed at a given location being accounted for. This can be done by probing 3 locations on the print bed. Don’t believe leveling the bed matters? Well, here are some problems that can arise from a poorly leveled bed: -Initial print layer does not stick or parts are missing -The hot end of the extruder scrapes the bed -The extruder gathers up plastic from the first or second layer So how does auto-leveling work? -An auto-leveling probe (aka z end-stop sensor) defines the distance between the extruder hot end and the print bed at any given location. The auto-leveling probe is to the right of the extruder and has an orange tip in the picture below. The Printrbot Metal Plus has an “inductive sensor” that detects the print bed via conductivity from the aluminum bed. The theoretical beauty of this design is that the sensor tip can be positioned at a level higher than the tip of hot end of the extruder and thus will not drag through your printing surface the way a touch down sensor would. The potential pitfall is that things that change conductivity (i.e. adjacent metallic objects) may affect the sensor. It is possible that your z end-stop sensor is faulty- if you are the unlucky soul that receives a malfunctioning sensor, you may be in for some hurt if your printer tries to jam the extruder into the table. Even if your sensor works, you may misjudge the distance from the extruder to the bed- for these reasons, be very close to an off switch or the plug when you are calibrating your negative z value. If the extruder is being jammed into the table, by all means, turn the printer off! To auto-level before each print, you need to make sure that the printing software contains the autoleveling G-code and adds it to the beginning of any slicing G-code. You need to set up auto-leveling in each slicing/printing program you use. It does not translate between them. The G code you use in Repetier is: G28 X0 Y0 G29 Below are some links to setting up auto-leveling in Repetier and Cura. Setting up auto-leveling in Repetier on Mac: http://help.printrbot.com/Guide/Setting+Up+Your+Auto-Leveling+Probe+and+Your+First+Print+-+Mac/107 Setting up auto-leveling in Repetier on PC: http://www.repetier.com/documentation/repetier-firmware/z-probing/ Setting up auto-leveling with Cura: http://www.instructables.com/id/Use-Printrbots-Autoleveling-Probe-with-Cura/ Beware: Just because your printer auto-levels itself, it doesn’t necessarily mean it won’t plunge through the printer bed in a desperate attempt to follow your every command. In fact, the printrbot metal plus is NOT smart enough to know when to say no. When we accidentally told it to go down 10 mm in the z direction when it was at Z0, it did so, much to our horror (see picture below). In the background of this picture, a hole in the stage marks the scene of an unfortunate z-axis accident. In the foreground, the outline of an aorta that did not make it (foreshadowing for the next blog entry). 4. Just how accurate is your model? You can check to make sure that the printer motors are appropriately calibrated- i.e. they actually travel the correct distance when told to do so. As described above, the printing software communicates with the printer (and thus the motors) using G-code. To make sure nothing is “lost in translation”, you need to make sure that when the software tells the printer head to move, say, 10 mm in the x-direction and 25 mm in the y-direction, the printer head appropriately translates that g-code into the correct movement. There are 4 motors: -X motor -Y motor -Z motor -Extrusion motor To check the calibration of the x, y and z motors, tell the printer to move 40 mm in the x axis and then measure to determine whether it is accurate. If you measure 40 mm, you are done. If not, you need to do some recalibration (see below). Do the same with the y axis and the z axis. Appropriate calibration in the x, y and z axis matters a lot for medical modeling…you want to make sure you are creating accurate models! To check the calibration of the extrusion motor, heat up the extruder to the recommended temperature for the filament. Use tape to mark a few cm up the filament and then measure from the tape to the entrance into the extruder. Tell the printer to extrude 10 mm of filament and measure again. Rate of extrusion really matters: your printing software assumes it knows the accurate amount of material extruded per given time. If too much is extruded, your print will have globs; if too little is extruded, you have holes or poor matrix This is a great primer on motor calibration and how to fix errors: http://www.instructables.com/id/Calibrating-your-3D-printer-using-minimal-filament/ 5. More advanced calibration/ “tweaking” to optimize your prints: A 3D printing manufacturer who goes by “Ville” recently designed and published an STL test file that can be used to troubleshoot calibration issues with any printer. The print has several challenges, including various overhangs, small details, different sized holes and wall-thicknesses, bridging and different surfaces. The idea is that users can share problems and solutions with each other. Read more at: http://3dprint.com/48922/3d-printer-calibrating-test/ Download this STL test file at: https://www.thingiverse.com/thing:704409 The top picture is what the test model should look like. The bottom picture is what my printer produced. Guess I have some tweaking to do.... In the next post, we will tackle one of the most infamous struggles in 3D printing- getting your model to stick to the print bed. Until then, happy printing! -Beth Ripley
  15. Getting from DICOM to 3D printable STL file in 3D Slicer is totally doable...but it is important to learn some fundamental skills in Slicer first if you are not familiar with the program. This tutorial introduces the user to some basic concepts in 3D Slicer and demonstrates how to crop DICOM data in anticipation of segmentation and 3D model creation. (Segmentation and STL file creation are explored in a companion tutorial ) This tutorial is downloadable as a PDF file, 3D Slicer Tutorial.pdf or can be looked through in image/slide format here in the blog 3D Slicer Tutorial.pdf
  16. This is a time of rapid growth in medical 3D printing. The technology allows us to take an individual patient’s scan information and create physical models, which can be used in any number of clinical applications. The industry standard DICOM image files from CT and MRI scanners can be converted into 3D files, such as STL (for stereolithography) files. These digital models can then be uploaded to a 3D printing service bureau or printed on one of the currently available professional grade printers.The democratization of desktop 3D printers, however, now allows almost anyone with a serious interest in the technology to print models in their own office/workshop. These can be used for educational purposes and for prototyping, and represent an excellent entrée into the technology. Recently, I started printing 3D models of some of my own patient’s scans using a consumer grade desktop printer. The patient’s CTs were acquired on our Toshiba Aquillion 64 Slice CT scanner using our standard acquisition protocols. The DICOM volume data was then burned to a CD for processing. For my initial test prints, I used the Materialise Mimics and 3-matic software under their 30-day free trial period. The images from the appropriate volume were imported into the Mimics software. Thresholding is then performed to isolate the tissues in question, based on its Hounsfield units, a measurement of X-ray density. The particular anatomy of interest is then selected using “region growing” tools and a 3D model is generated. The model is then “wrapped”, to account for the individual CT slices, and to smooth any gaps in the 3D mesh. Choosing the degree of wrapping is where experience comes into play. Too little wrapping can cause gaps to be present on your final models. Too much, and detail can be lost. The 3D model is then exported into the 3-matic program for “local smoothing” of the model. The digital model is then hollowed, depending on the structure and its use. You then export it as a binary STL file. In all of the steps above, clinical knowledge of the anatomy is extremely helpful in creating the most accurate models possible. Understanding how the models will be used informs your decisions in their creation. The STL file is then imported into a slicing software to create the G-code files that instruct the printer how to actually create the physical model. I used the open source Cura software for the generation of the G-code for the printer. An image of the 3D model is seen superimposed in a representation of the build plate of the particular printer, in my case the Ultimaker 2 (Ultimaker B.V.). The model can be rotated to optimize the printing process. The highest resolution of current 3D prints from fused filament printers is in the z-direction: from the bottom on the build plate to the top of the object. The degree of overhang must also be taken into account. Since the filament cannot be deposited in thin air, the slicing software creates a scaffold to support the overhanging material. Keep in mind; this support structure must be physically removed in post-processing. The slicing software also creates a thin base layer of the material (called a brim or raft) that is deposited around the object to facilitate print adherence to the print platform. The generated G-code is saved to an SD card, which is then placed into the printer. In some cases, the files can be transferred wirelessly. I used 2.85 mm PLA filament to create the printed models. PLA is polylactic acid, a biodegradable material derived from cornstarch. PLA based material has been used in orthopedics for sutures, controlled release systems, scaffolding for cartilage regeneration, and fixation screws. The print time takes several hours, depending on the size and complexity of the model, as well as the amount of support structure used. Through trial and error, I found that careful positioning of the 3D model on the virtual build plate can potentially shorten the length of printing time. A full-scale hollow abdominal aortic aneurysm model took about 9 hours to print, while a full-scale scapula took 13 hours. A life-size pediatric skull will take approximately 23 hours to print! The use of 3D printing in medicine presents enormous potential. Exponential development of many new applications will occur if researchers, students and clinicians have access to small-scale 3D printers for prototyping new devices and procedures. The future is only limited by the imagination. A method of reimbursement wouldn’t hurt either. I would like to thank Frank Rybicki, MD, Professor and Chair of Radiology, University of Ottawa, and his team from the Applied Imaging Science Laboratory at Brigham and Women's Hospital for their great 3D Printing Hands-on courses at RSNA 2014. Copyright ©2015 Eric M. Baumel, MD
  17. When a 77-year-old patient at Hong Kong’s Queen Elizabeth Hospital needed a complex heart surgery, the surgeons at the facility relied on three-dimensional (3D) medical printing for additional support. The patient was suffering from two damaged valves and had already undergone three open heart surgeries. Her body was not ready for a fourth intervention. The doctors decided to replace the damaged valves by making a small incision through her blood vessels. However, such an intervention had never been performed. A 3D printer helped the doctors create an exact replica of the patient’s heart and practice the intervention several times. They completed the actual procedure successfully in just four hours. 3D Printing Heart Helps with Cardiovascular Surgical Planning Surgeons at pediatric cardiac surgery center at the People’s Hospital in China also used a 3D printed model of the patient’s heart to analyze the anatomical abnormalities closely prior to the surgery. Their nine-month-old patient was born with malpositioned pulmonary veins and an atrial septal defect. The surgeons acknowledged that the anatomical model contributed significantly to the success of the intervention. Researchers in other parts of the world are also looking at additive printing or 3D printing technology to treat and manage cardiovascular illnesses more efficiently. The technique involves deposition of desired materials on a substrate in a predetermined manner to print an object of choice. Healthcare professionals believe that this revolutionary tool will help millions of patients suffering from heart disease and stroke. An estimated 17.5 million people died globally from such conditions in 2012, as per the World Health Organization. They were also responsible for one in four deaths across the United States, as per the Center for Disease Control and Prevention. 3D Printing Blood Vessels The use of 3D printing technology is not limited to the creation of anatomical models. Scientists at Saga University in Japan used the Kenzan method of 3D printing to develop 2mm by 5 mm blood vessels for patients with myocardial infarction. The researchers used tiny vertical spikes to position the cells and form tubular structures in a nutritious broth. Traditionally, cardiologists replaced the damaged blood vessels of the heart with healthy ones from other parts of the body. However, finding compatible replacements without impacting other physiological functions has been a challenge. The 3D printed implants can be customized as per the needs of the patient and can be used to replace the damaged veins and arteries with precision. Cyfuse Biomedical is employing tissue engineering techniques as they work to bring bioprinted nerves, blood vessels, cartilage, liver and heart muscle to the clinic. 3D Printing Heart Valves In another instance, scientists at Denver University custom printed heart valves that are the replicas of the original ones. Researchers obtained specific dimensions of the valves from CT and MRI scans and bioprinted them in just 22 minutes. Denver researchers are currently working to improve the biocompatibility of the 3D printed valves. The ultimate goal is to design patient-specific implants with a low risk of graft rejection. Given these developments, healthcare professionals and scientists are immensely hopeful about the development of a 3D printed heart. The biggest challenge, lies in creating a network of functional blood vessels that will allow the organ to survive in the body for a prolonged period of time. While the idea of printing a human heart may seem far-fetched, it is evident that 3D printing is influencing cardiovascular disease management in a big way. Sources: http://www.chinadaily.com.cn/china/2016-03/17/content_23921711.htm https://www.regmednet.com/users/3641-regmednet/posts/11230-nerve-and-blood-vessel-regeneration-using-3d-bioprinting-technologies http://www.thedenverchannel.com/money/science-and-tech/denver-university-researchers-use-3d-bioprinter-to-create-artificial-body-parts
  18. Three-dimensional bioprinting and medical printing technologies are influencing the field of ophthalmology in a big way. Quingdao Unique, a Chinese bioprinting company, had announced in 2015 that they will be able to print 3D corneal implants within a year. Their products will be available for animal testing initially, and if everything goes as per plan, their 3D printed human corneas could be ready for clinical trials in the next two to three years. The company’s third generation bioprinter provides optimal conditions for cell growth with a temperature range of 0 to 50 degrees Celsius, humidity regulation range of 80 to 98 percent, and pH of 7.0 to 7.5. Quingdao plans to overcome strength and flexibility issues associated with most human implants by using the patient’s own cells for printing. Ophthalmologists across the globe are very excited about this development. Corneal transplants help treat vision loss due to infections, congenital deformities and injuries. In fact, cornea is the most commonly transplanted organ in the United States with over 40,000 patients receiving a new one each year, as per the American Transplant Foundation. Yet, 53 percent of the world’s population does not have access to corneal transplantations, as per a global survey published in the February, 2016, edition of the journal JAMA Ophthalmology. Additionally, many patients experience complications when their immune systems reject the transplanted graft. Three-dimensional bioprinting is, however, expected to change all that. Scientists and healthcare professionals can rely on additive printing technology to deposit patient’s own cells and other compatible materials in a pre-determined manner on a desired substrate to create patient-specific implants with a lower rate of rejection. The 3D bioprinting technology also accounts for the natural anatomical variations that exist among humans. Doctors can refer to radiological images of the patients’ eyes to generate implants that have the same dimensions as the original one. 3D Printing Aids in the Diagnosis of Glaucoma and Other Eye Diseases Dr. Andrew Bastawrous, a Kenya-based eye surgeon, created a smart phone app to diagnose eye diseases such as glaucoma, macular degeneration and diabetic retinopathy. The app relies on the patient’s perception of the various orientations of the letter “E” to provide the diagnoses. A small 3D printed adapter can be added to the camera of the smartphone to obtain an image of the retina on the screen of the phone while administering the test. This technology is helping Dr. Bastawrous diagnose and treat thousands of patients with eye diseases in underprivileged areas of sub-Saharan Africa. Ophthamology Surgical Planning The use of 3D printing is not limited to corneal transplantations. Surgeons can use this technology to create models of the patient’s eyes and practice the procedure before the actual intervention. This preparation “would allow a full appreciation of the anatomic relationships between the lesions and the complicated surrounding structures,” as per an article published in the journal Investigative Ophthalmology and Visual Science. This invaluable tool has also transformed clinical practice and education. Researchers are using a 3D Systems Z650 printer to produce “highly realistic” 3D prints of orbits that offer enhanced visualization of the delicate nerves of the eye. The 3D models are made from non-human materials and thereby, help avoid the ethical questions associated with cadaver specimens. These recent developments only form the tip of the iceberg. Nonetheless, they clearly exemplify the limitless possibilities of 3D printing in ophthalmology. The technology is bound to simplify the treatment of eye diseases and improve patient outcomes dramatically.
  19. The knee joint is the strongest and the largest joint of the human body. It consists of the lower end of the thighbone, upper end of the shin bone, and the knee cap. The three bones are connected to each other with articular and meniscal cartilages that act as shock absorbers and help protect and cushion the joint. Degeneration of the knee joint due to age and overuse can cause unwanted friction and bone spurs. The condition, also known as osteoarthritis, is the most prevalent form of arthritis and is often seen in individuals over 50 years of age. Osteoarthritis develops slowly and leads to worsening pain and stiffness of the knee joint, grinding or clicking noise during movement, and weakness in the knee. Treatment involves lifestyle changes, physical therapy, and viscosupplementation injections. Patients with severe form of the disease may require a surgical intervention. During the process, the doctor may remove cartilage from another part of the body and place it in the knee or may replace the damaged cartilage with plastic and metal implants. Researchers across the globe are now looking at three-dimensional (3D) medical printing and bioprinting technologies to create highly compatible, patient-specific knee implants that will increase the success rates of total knee arthroplasty by improving patient outcomes and lowering the risks of a revision surgery. Unlike traditional implants that come in a few specific shapes and sizes, 3D printed cartilages can be customized as per the needs of the patient. Surgeons can use the additive printing technology to print larger cartilages as well. The Biopen: A Handheld Bioprinter Used During Operations A team of researchers and surgeons from St. Vincent’s Hospital, Melbourne, developed the Biopen, a type of 3D printer that helps doctors create cartilaginous tissue fragments during the actual surgical intervention. The surgeon can customize the size and the shape of the tissue as per the needs of the patient. Researchers predict that the medical-grade plastic and titanium Biopen will lead to 97 percent survival of the cells and will transform knee surgeries forever. This technology may, however, have some drawbacks. The human cartilage is made of only one type of cell. Scientists, therefore, tried to grow the tissue by embedding specific cells in a hydrogel but the liquid medium may restrict cell growth and intercellular communication. Consequently, the new implant may not have the desired mechanical integrity. Additionally, the degradation of the hydrogel may lead to the formation of toxins that would inhibit cell growth. Hence, researchers began looking for other materials to create cartilage implants. A New Bio-ink Holds Promise for Printing Cartilage Scientists at Penn State, under the supervision of Dr. Ibrahim T. Ozbolat, created tiny tubes from algae extracts, injected cow cartilage cells into them, and allowed the tubes to grow for a week to create tiny cartilage strands. A bio-ink made from these strands was fed into a specially designed nozzle of a 3D printer to develop cartilage tissues of the desired size. Although this 3D printed cow cartilage is weaker than its natural counterpart, it is definitely better than the hydrogel version. Dr. Ozbolat believes that the implants will strengthen once they get exposed to the pressure from the joints. His team also hopes to mimic the entire process using human cartilage cells. The Center for Disease Control and Prevention (CDC) estimates that one in two Americans will be diagnosed with osteoarthritis by the age of 85. An estimated 249,000 children under the age of 18 also suffer from some form of arthritis. Additive printing technology is offering hope to millions of individuals looking to overcome pain and improve quality of life. While most of these products are still at an inceptive stage, researchers are trying to start clinical trials at the earliest and get the required approvals in the not-so-distant future. Sources: https://www.engadget.com/2016/04/04/biopen-lets-doctors-3d-print-cartilage-during-surgery/ https://www.sciencedaily.com/releases/2016/06/160627094828.htm
  20. Defects and deformities of the vertebral column can have a debilitating impact on the patient’s quality of life. Thirteen-year-old Jocelynn Taylor was no different. She was diagnosed with scoliosis, a condition characterized by an abnormally curved spine that may develop in children during one of their growth spurts. Jocelynn’s condition prevented her from being active in school and at home. Her vertebral column was also pushing her lungs and preventing her from breathing normally. 3D Printing Aids in Complex Spinal Surgery Unlike most scoliosis patients, Jocelynn’s curvature extended past 100 degrees and required a complex surgery. Physicians at Children’s Hospital in Colorado took up the challenge under the supervision of Dr. Sumeet Garg. They worked closely with engineers at Mighty Oak Medical to create a specific three-dimensional (3D) model of Jocelynn’s spine. The model helped Dr. Garg with pre-surgical planning. He also practiced the surgery several times prior to the actual procedure and was prepared for any eventuality that could have crop up during the intervention. The surgeon also relied on additive printing technology to print customized brackets to straighten the vertebral column. Since the surgery, Jocelynn has been able to live life to without any restrictions and is immensely excited about the upcoming school year. Dr. Ralph Mobbs, a neurosurgeon at the Prince of Wales Hospital in Sydney, worked with an Australian medical device company to print an exact replica of a patient’s cervical spine and its underlying tumor. He used the model to understand the patient’s anatomy and practice the surgical intervention. In the past, doctors usually avoided such procedures as one small mistake could lead to permanent nerve damage and quadriplegia. The 3D model helped Dr. Mobbs successfully remove the patient’s tumor without impacting the surrounding nerves. Approximately 276,000 people across the United States are living with spinal cord injuries. An estimated 7 million people suffer from scoliosis. About 24,000 men and women have malignant tumors in their spinal cord. People also suffer from other spinal conditions such as spondylosis and intervertebral disc degeneration. Additive printing technology is influencing the way doctors approach these conditions and is helping improve patient outcomes significantly. 3D Printing Spinal Implants Spinal tumors have also received a lot of attention in recent times. While their treatment often involves drastic measures, 3D printing is making it easier for patients to recover and rehabilitate quickly after the intervention. For example, surgeons in China had to remove a significant portion of a patient’s backbone along with the tumor to prevent the spread of his cancer. While the patient was able to beat the disease, he was unable to use his legs. Orthopedic surgeons at Beijing’s Third University Hospital, under the supervision of Dr. Liu Zhongjun, 3D printed patient-specific spinal implants to replace five missing vertebrae. The 7.5-inch long titanium mesh constructs allow the patient’s own spinal cord to grow over time, and the implant will automatically biodegrade over time. Although some of these cases have received extensive media attention, they are not the only ones. Doctors across the globe are relying on 3D medical printing and bioprinting technologies to treat and manage many types of spinal conditions. In another important step forward,Oxford Performance Materials (OPM) received the Food and Drug Administration (FDA) approval for its spinal implant system designed to replace thoracolumbar vertebrae T10 to L1. The Connecticut-based company is now offering hope to thousands of patients with spinal trauma or cancer. The polymer construct met all the load-bearing and fatigue requirements of the FDA and is now available for patient use through specific distributors. OPM is working to expand its product line to include additional lumbar and cervical vertebrae. Other companies and research organizations are also looking for newer treatments that will help patients lead productive lives, in spite of their spinal problems. Collectively, these attempts will make 3D printing technology indispensable in the not-so-distant future. Sources http://www.abc.net.au/news/2016-02-22/tumour-patient-gets-worlds-first-3d-printed-vertebrae/7183132 http://english.cntv.cn/2014/08/18/VIDE1408306798015287.shtml http://www.tctmagazine.com/3D-printing-news/oxford-performance-materials-gets-fda-approval-for-first-in-kind-spine-fab-3d-printed-127384/
  21. The brain is arguably the most important organ within the human body as it controls major physiological and psychological functions responsible for growth and survival. Several conditions, including cancer, stroke, infections, inflammation, congenital deformities, and Alzheimer’s disease, can impair brain function and lead to serious illnesses and disabilities. Treatments may include medications, surgery and physical therapy among other things. Researchers across the globe are spending millions of dollars to improve patient outcomes and to enhance the quality of life of individuals with brain diseases. Three-dimensional (3D) medical printing and bioprinting are playing a crucial role in identifying new treatments and facilitating the implementation of existing ones. 3D Printing Brain Helps Doctors Treat Patients Human brain is a complex organ made up of over 100 billion neurons that form trillions of connections, known as synapses, to send and receive messages. Each neuron plays a specific role in the body, and minor errors during surgical interventions may lead to serious complications and permanent loss of bodily functions. Neurosurgeons often rely on MRI and CT scan images to understand the anatomy of the patient’s brain and the actual defect. While the images are fairly accurate, they provide limited information and tend to miss crucial aspects of the problem that may impact the surgery. Doctors are looking at 3D printing to increase the chances of a successful outcome. Neurosurgeon Mark Proctor and plastic surgeon John Meara of Boston Children’s Hospital created a 3D model of the brain of an infant, who was born with a part of the tissue outside his skull. The physicians obtained specific measurements of the patient’s brain from scanned images and fed the data into a computer to generate the 3D model. The model helped the doctors study the patient’s abnormality in detail and practice the procedure prior to the actual intervention. Harvard University researchers studied several MRI scans before printing a three-dimensional smooth brain of a fetus, equivalent to the one at 20 weeks of gestation. The researchers, then, coated the 3D-printed brain with a thin layer of gel to the mimic cerebral cortex and placed it in a liquid to study the formation of folds in the brain. The aim was to understand congenital brain folding abnormalities and to help improve life expectancies of babies born with such defects. The use of 3D printing is not limited to the treatment of anatomical abnormalities. Researchers at Heriot-Watt University in Edinburgh are printing stem cells and other types of cells found in brain tumors using additive printing technology to recreate tumor-like constructs for the laboratory. The multicellular models are being used to study the anatomy and the physiology of brain tumors. Researchers are also relying on them to test new drugs and therapeutics that may finally help cure for this deadly disease. 3D Printed Microchips and Prosthetics Combine for a Sense of Touch Prosthetic arms and limbs have been in use for several decades. However, most devices were clunky and uncomfortable. Three-dimensional medical printing has helped create prosthetics that can be customized to fit the patient perfectly. Modern, robotic versions can also help the patient move the limb as required. St. Vincent’s Hospital’s Aikenhead Centre for Medical Discovery has coordinated with scientists at University of Melbourne, the University of Wollongong, and several other institutions to take prosthetic arm research to the next level by developing a 3D printed prosthetic arm with a sense of touch. The idea is to establish a direct connection between the prosthetic limb and the patient’s brain. The researchers are relying on 3D printed muscle cells on microchips to communicate with implanted electrodes, natural tissues and cells. A prototype of this robotic arm is expected by the end of 2017. Apart from producing high quality prosthetic arms, this new technology may also help treat other serious illnesses, including epilepsy, by establishing connections between nerve cells and electrodes to translate brain signals. Stroke and Alzheimer’s disease are one of the leading causes of death in the United States, as per American Academy of Neurology. Furthermore, 8 out of 10 diseases found in the World Health Organization’s list of three highest disability classes have a neurological origin. Three-dimensional medical printing and bioprinting are offering novel insights into brain diseases and neurological problems and are allowing scientists and physicians to find cures with a lasting impact. Sources: http://www.digitaltrends.com/cool-tech/3d-printed-skull/ http://www.digitaltrends.com/cool-tech/brain-cancer-3d-printing/ https://biotechin.asia/2016/06/02/3d-printing-of-brain-tumors-a-step-closer-to-treatment/
  22. Stem cell research has been plagued with innumerable controversies and ethical questions. Most researchers agree that these undifferentiated embryonic cells have the potential to treat serious conditions such as heart disease, diabetes, stroke, arthritis, and Parkinson’s disease. They may also help evaluate the impact of new drugs and therapies at the cellular level. Scientists, however, must be able to differentiate the stem cells consistently within a controlled environment to meet their specific needs. Furthermore, obtaining these cells from five to six day old embryos may not be acceptable to everyone. The scientific community is, therefore, looking at three-dimensional (3D) bioprinting to overcome some of the obstacles associated with stem cell research and to make the treatments more accessible, efficient and safe. 3D Printed Stem Cells There have been multiple attempts to print stem cells in the laboratory. Nano Dimension, an Israel-based technology firm, recently filed a patent for 3D printed stem cells. The company collaborated with Accellta, which is known for its stem cell suspension and induced differentiation technologies. Researchers from both organizations worked together to accelerate the printing process with the help of a specially adapted 3D printer that can print billions of high quality stem cells per batch. Nano Dimension believes that its technology can benefit pre-clinical drug discovery and testing, toxicology assays, tissue printing, and transplantation. Previously, scientists at Heriot-Watt University in Edinburgh created a cell printer that produced living embryonic stem cells. The printer, a modified CNC machine, was fitted with two bio-ink dispensers. The machine dispensed layers of embryonic stem cells and nutrient media in a specific pattern that was ideal for differentiation. In another study, researchers at Tsingua University in China and Drexel University in Philadelphia developed homogenous embryoid bodies using the 3D printing technology. The process mimicked early stages of embryo formation that involves clumping of the pluripotent stem cells. Researchers of this study believe that these little building blocks will pave way for the creation of larger, heterogeneous embryoid bodies. Recent Applications of 3D Bioprinting Bioprinted 3D stem cells are also being used to treat a variety of conditions. For example, researchers at ARC Center of Excellence for Electromaterials Science and Orthopedicians at St. Vincent’s Hospital, Melbourne, have developed a 3D printing pen that allows surgeons to create customized cartilage implants from human stem cells during the surgery. The handheld device offers unprecedented control and accuracy. The pen works by extruding the patient’s own stem cells along with a hydrogel. The cartilage tissue has a 97 percent survival rate and can heal the body over time. Researchers believe that this technology can also be used to create skin fragments, muscles and bone structures. As part of the MESO-BRAIN initiative, led by Aston University, scientists differentiated human pluripotent stem cells into specific neurons on a specially defined 3D printed scaffold. The final structure was based on the outer layer of the cerebrum and included nanoelectrodes that enabled electrophysiological function of the neural network. The technology will help develop cellular structures for pharmacological testing and help find cures for complicated mental illnesses such as Parkinson’s disease and dementia. Three-dimensional bioprinting technology is growing at a rapid pace, and scientists are using it to print stem cells as well. The 3D printed versions resemble the actual stem cells in structure and function without some of the drawbacks. Scientists and healthcare professionals across the globe are, therefore, excited about the limitless possibilities of 3D printing and its impact on stem cell research. Sources: http://www.tctmagazine.com/3D-printing-news/nano-dimension-accellta-3d-bioprinter-stem-cells/ http://www.sciencealert.com/scientists-have-found-a-way-to-3d-print-embryonic-stem-cell-building-blocks
  23. The removal and reconstruction of a large part of the chest wall is often required to treat malignant tumors that occur in the cartilage or bone of the ribcage. However, the potential for complications in these types of surgeries is unacceptably high—the overall complication rate is over 40% and the 30-day mortality rate is up to 17%. Many of the complications are respiratory-related. A team of doctors at Asturias University Central Hospital, in Asturias, Spain suspected that the patients’ difficulty breathing resulted from the stiffness of the implants. They performed a surgery using 3D printed titanium rib implant designed to be more flexible. Using 3D printing to produce rib implants to replace parts of the ribcage is not new. A world-first surgery with a 3D printed implant was also performed about a year ago, also in Spain, according to articles published in Forbes and Gizmodo (entry image credit). Because each person’s ribcage structure is unique, using 3D printing to produce such implants has the obvious advantage of producing an exact replica. Both implants were made using information from a CT scan, and printed using the same technique—layer-by-layer electron beam melting starting with titanium powder in a high vacuum by an Arcam Q10 printer. In this more recent surgery, the doctors made the implant less rigid by incorporating articulations as shown in the figure, on the right side of the implant. As you can see such a complicated object could only be created in one piece using 3D printing techniques. They published their findings in the Journal of Thoracic Disease. Picture of titanium rib implant, Journal of Thoracic Disease The 57 year old male patient regained normal function after six weeks without complications. CT scan eight weeks after surgery, Journal of Thoracic Disease
  24. Since the 1970s, modern dental implants have helped millions of patients suffering from tooth loss due to periodontal diseases and injuries. Their success encouraged researchers and dental professionals to come up with newer designs to improve patient care. As three-dimensional (3D) printing became more efficient and accessible, dental professionals also began using the technology to create customized dental implants. Recent Developments of 3D Printing in Dentistry Most 3D printers use additive manufacturing technology, which allows dental laboratory technologists to deposit desired materials on a substrate in a specific pattern. The technologists scan the patient’s jaw to obtain specific measurements and enter the data into a computer. The printer uses this data to create customized implants with unprecedented accuracy and fit. Maxillofacial surgeons at Baruch Padeh Medical Center and A. B. Dental created 3D printed titanium implants to help a 64-year-old man suffering from a metastatic tumor at the back of his jaw. The condition affects 1 to 1.5 percent of people suffering from malignant tumors and is characterized by pain, difficulty chewing and disfigurement. The 3D printed custom-made implants reduced recovery time after the surgery and helped enhance the patient’s quality of life. As part of another revolutionary research study, scientists from University of Groningen in the Netherlands have developed 3D printed teeth using antimicrobial polymers. These replacement teeth and veneers contain positively charged resin groups that kill the bacteria, Streptococcus mutans, by producing holes in its cell membrane. Analysis within the laboratory indicated that the treated new teeth suppressed the growth of pathogenic bacteria by almost 99 percent when compared to their untreated counterparts. Additionally, these teeth are made from inexpensive polymers that are readily available. In another pioneering attempt, researchers at University of Louisville recently developed a fully digital dental surgery protocol using 3D scanning, CNC milling and 3D printing to restore lost teeth. This new procedure skipped several steps from the existing implant manufacturing techniques and thereby, made the surgical intervention more efficient and accurate. The researchers used a 3D scan to obtain specific measurements of the missing teeth and relied on a CNC mill to generate the implant. They created an exact replica of the patient’s oral cavity with a 3D printer to guide the dentist during the actual surgery. Benefits of 3D Printed Implants While the above-mentioned examples offer insights into the rapidly growing field of 3D printed dental implants, multiple new inventions are happening as we speak. The ultimate aim is to overcome the drawbacks associated with traditional dental implants, which involve complex and invasive surgical interventions that are time-consuming and risky. The newer 3D printed implants allow dentists to replace lost teeth with pinpoint accuracy and minimal discomfort. The technology also allows surgeons to customize the implants as per the specific needs of the patient for more aesthetic results. Laboratory professionals can generate dental models and implants at a faster rate, thereby lowering the wait time for the patients. More than 30 million Americans are missing all teeth from one or both jaws, as per the American Academy of Implant Dentistry. Over 3 million people have dental implants at this time, and this number is increasing by 500,000 each year. Dental surgeons across the globe hope that 3D printed implants will make treatment more accessible, safe and cost-effective for all the patients, and thereby, help them overcome tooth loss with dignity. Sources: http://www.stratasys.com/resources/case-studies/dental/oratio-bv http://www.thejpd.org/article/S0022-3913%2816%2900031-7/abstract http://www.gizmag.com/3d-printer-teeth-kill-bacteria/40161/ http://www.smithsonianmag.com/innovation/these-3d-printed-teeth-fight-bacteria-180957030/?no-ist
  25. Casey Steffen has a background in video game animation and a Master’s degree in biological visualization but he describes himself as a “medical illustrator and a type I diabetic” in the video introduction to his RocketHub crowdfunding page, that raised money to support a project to make educational models of the protein hemoglobin, that has 4,659 atoms. The proposal was completely funded two years ago. The project addresses confusion surrounding the common hemoglobin A1c (HbA1c) test. Unlike the blood sugar measurement, it represents the average over three months (the lifetime of a red blood cell) of the fraction of bloodstream HbA1c (hemoglobin with sugar molecules attached as shown in the the models). If this number is above a certain range (7% for people with diabetes, according to WebMD) it means blood sugar has not been well controlled. A higher number is indicative of prolonged elevated blood sugar. It’s used for long term tracking of how patients manage their blood sugar. The hemoglobin models provide patients with a physical and visual representation of what the test means, so they can better understand what’s going on in their body, and why it’s important to control their blood sugar. An elevated blood sugar causes damage to certain tissues, like the eyes and blood vessels in the feet, slowly, over a long period of time. To get the hemoglobin models right, Steffen collaborated with Patricia Weber, a structural biologist and Mary Vouyiouklis, his endocrinologist. When Steffen met Michael Gulen, who was a prototype development director at a company that makes action figures, a collaboration was born. Wired Magazine covered their story about five years ago. Steffen’s company, Biologic Models, makes models of proteins for scientific and medical education. The physical models of proteins are created from x-ray crystallography data sets. For some of the models, like the hemoglobin ones, 3D printing from a Form 1 3D printer serves to make the prototype for plaster molds, to finally cast the models in silicone. The company partners with the 3D printing company Shapeways to print several proteins including the Zika virus shell and the Ebola virus ectodomain (the part that fuses to the cell membrane). Digital preview of Zika virus shell Ebola virus ectodomain Customers can also choose to have the company provide a plan for 3D printing their favorite protein by providing its PDB ID from the protein data bank, a resource of protein structure x-ray crystallography data. Customers can then have it 3D printed or print it themselves. Based on a post from formlabs.
×
×
  • Create New...