Jump to content

tsehrhardt

Premium
  • Content Count

    138
  • Joined

  • Last visited

  • Days Won

    32

Everything posted by tsehrhardt

  1. Version 1.0.0

    11 downloads

    c0147 Skull, Male 62yo - processed, head, skull, bone, 3d model, mandible, maxilla, orbit, nasal, teeth, alveolar, zygomatic, arch, occipital, temporal, frontal, parietal, printable

    Free

  2. Version 1.0.0

    54 downloads

    62yo male skull from the Head-Neck Cetuximab collection of The Cancer Imaging Archives. Bosch, Walter R., Straube, William L., Matthews, John W., & Purdy, James A. (2015). Data From Head-Neck_Cetuximab. The Cancer Imaging Archive.http://doi.org/10.7937/K9/TCIA.2015.7AKGJUPZ Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository, Journal of Digital Imaging, Volume 26, Number 6, December, 2013, pp 1045-1057.

    Free

  3. Version 1.0.0

    6 downloads

    These are the pubic bones of a 59yo male (ABD_LYMPH_011) from the CT Lymph Nodes Collection of TCIA, which is made available under Creative Commons Attribution 3.0 Unported License. I modeled these with the Grayscale Model Maker in 3D Slicer (see tutorial pt. 1), hollowed with Meshlab, fixed for printing with Meshmixer. "ABD011_PS_M59_1mm.stl" has a wall thickness of 1 mm to minimize material volume for printing with powder-based printers (for example, through Shapeways)--I would recommend white "strong and flexible plastic." "ABD011_PS_M59_hollow.stl" is hollow with filled holes--this is what I would use for filament printers, but you could use this to print a solid model through Shapeways. I also cut the bottoms flat on both so they can be oriented upright to print--I would not recommend printing with the symphyseal face up because the layering process will impose ridges. If you want to split the left and right halves, in Meshlab use the filter "Split in Connected Components"--once split, each "layer" can be exported as separate .stl files. The "Plane Cut" tool in Meshmixer can be used to further cut the models if you want smaller segments. If you would like to add shading to the 3D models to enhance viewing of the symphyseal face, in Meshlab apply the Filter--> Color Creation and Processing--> Ambient Occlusion per Vertex.

    Free

  4. Yay! This works great and I was not able to break it!
  5. Version 1.0.0

    7 downloads

    These are the pubic bones of a 73yo male (ABD_LYMPH_007) from the CT Lymph Nodes Collection of TCIA, which is made available under Creative Commons Attribution 3.0 Unported License. I modeled these with the Grayscale Model Maker in 3D Slicer (see tutorial pt. 1), hollowed with Meshlab, fixed for printing with Meshmixer. "ABD007_PS_M73_1mm.stl" has a wall thickness of 1 mm to minimize material volume for printing with powder-based printers (for example, through Shapeways)--I would recommend white "strong and flexible plastic." "ABD007_PS_M73_hollow.stl" is hollow with filled holes--this is what I would use for filament printers, but you could use this to print a solid model through Shapeways. I also cut the bottoms flat on both so they can be oriented upright to print--I would not recommend printing with the symphyseal face up because the layering process will impose ridges. If you want to split the left and right halves, in Meshlab use the filter "Split in Connected Components"--once split, each "layer" can be exported as separate .stl files. The "Plane Cut" tool in Meshmixer can be used to further cut the models if you want smaller segments. If you would like to add shading to the 3D models to enhance viewing of the symphyseal face, in Meshlab apply the Filter--> Color Creation and Processing--> Ambient Occlusion per Vertex.

    Free

  6. Version 1.0.0

    6 downloads

    These are the pubic bones of a 59yo female (ABD_LYMPH_006) from the CT Lymph Nodes Collection of TCIA, which is made available under Creative Commons Attribution 3.0 Unported License. I modeled these with the Grayscale Model Maker in 3D Slicer (see tutorial pt. 1), hollowed with Meshlab, fixed for printing with Meshmixer. "ABD006_PS_F59_1mm.stl" has a wall thickness of 1 mm to minimize material volume for printing with powder-based printers (for example, through Shapeways)--I would recommend white "strong and flexible plastic." "ABD006_PS_F59_hollow.stl" is hollow with filled holes--this is what I would use for filament printers, but you could use this to print a solid model through Shapeways. I also cut the bottoms flat on both so they can be oriented upright to print--I would not recommend printing with the symphyseal face up because the layering process will impose ridges. If you want to split the left and right halves, in Meshlab use the filter "Split in Connected Components"--once split, each "layer" can be exported as separate .stl files. The "Plane Cut" tool in Meshmixer can be used to further cut the models if you want smaller segments. If you would like to add shading to the 3D models to enhance viewing of the symphyseal face, in Meshlab apply the Filter--> Color Creation and Processing--> Ambient Occlusion per Vertex.

    Free

  7. Version 1.0.0

    6 downloads

    These are the pubic bones of a 41yo female (ABD_LYMPH_005) from the CT Lymph Nodes Collection of TCIA, which is made available under Creative Commons Attribution 3.0 Unported License. I modeled these with the Grayscale Model Maker in 3D Slicer (see tutorial pt. 1), hollowed with Meshlab, fixed for printing with Meshmixer. "ABD005_PS_F41_1mm.stl" has a wall thickness of 1 mm to minimize material volume for printing with powder-based printers (for example, through Shapeways)--I would recommend white "strong and flexible plastic." "ABD005_PS_F41_hollow.stl" is hollow with filled holes--this is what I would use for filament printers, but you could use this to print a solid model through Shapeways. I also cut the bottoms flat on both so they can be oriented upright to print--I would not recommend printing with the symphyseal face up because the layering process will impose ridges. If you want to split the left and right halves, in Meshlab use the filter "Split in Connected Components"--once split, each "layer" can be exported as separate .stl files. The "Plane Cut" tool in Meshmixer can be used to further cut the models if you want smaller segments. If you would like to add shading to the 3D models to enhance viewing of the symphyseal face, in Meshlab apply the Filter--> Color Creation and Processing--> Ambient Occlusion per Vertex.

    Free

  8. Version 1.0.0

    5 downloads

    These are the pubic bones of a 60yo male (ABD_LYMPH_004) from the CT Lymph Nodes Collection of TCIA, which is made available under Creative Commons Attribution 3.0 Unported License. I modeled these with the Grayscale Model Maker in 3D Slicer (see tutorial pt. 1), hollowed with Meshlab, fixed for printing with Meshmixer. "ABD004_PS_M60_LR_1mm_cut.stl" has a wall thickness of 1 mm to minimize material volume for printing with powder-based printers (for example, through Shapeways)--I would recommend white "strong and flexible plastic." "ABD_004_PS_M60_flat2.stl" is hollow with filled holes--this is what I would use for filament printers, but you could use this to print a solid model through Shapeways. I also cut the bottoms flat on both so they can be oriented upright to print--I would not recommend printing with the symphyseal face up because the layering process will impose ridges. I've included a screenshot showing how to split the left and right halves in Meshlab using the filter "Split in Connected Components"--once split, each "layer" can be exported as separate .stl files. The "Plane Cut" tool in Meshmixer can be used to further cut the models if you want smaller segments. If you would like to add shading to the 3D models to enhance viewing of the symphyseal face, in Meshlab apply the Filter--> Color Creation and Processing--> Ambient Occlusion per Vertex.

    Free

  9. Pictures of 3D printed bones for forensic anthropology.
  10. From the album: 3D Bones for Anthropology

    Experimenting with printing a nose reference. I printed with the posterior surface on the bed and left the supports between the skin and bone pieces.
  11. From the album: 3D Bones for Anthropology

    Reference noses I printed from Shapeways using "elastic plastic," a material available to makers only. I wanted to see how well skin looked in this material and I like it!
  12. From the album: 3D Bones for Anthropology

    Skull fragments that I scanned with a NextEngine and printed.
  13. From the album: 3D Bones for Anthropology

    Fetal skull. Skull fragments that I scanned with a NextEngine and printed.
  14. From the album: 3D Bones for Anthropology

    3D printed craniofacial reference with soft tissue. We are hoping to generate a collection of reference features for forensic facial approximation workshops.
  15. From the album: 3D Bones for Anthropology

    3D printed skull with 3D printed tissue depth pegs, made for a student to practice clay facial approximation.
  16. Version .stl

    17 downloads

    These are the pubic bones of an 18yo male (ABD_LYMPH_010) from the CT Lymph Nodes Collection of TCIA, which is made available under Creative Commons Attribution 3.0 Unported License. I modeled these with the Grayscale Model Maker in 3D Slicer (see tutorial pt. 1), hollowed with Meshlab, fixed for printing with Meshmixer. "ABD010_PS_M18_1mm.stl" has a wall thickness of 1mm to minimize material volume for printing through Shapeways--I would recommend white "strong and flexible plastic." "ABD010_PS_M18_closed.stl" is hollow with filled holes--this is what I would use for filament printers, but you could use this to print a solid model through Shapeways. I haven't printed this model yet, but I will post pics when I do!

    Free

  17. Thanks! I really like the Grayscale Model Maker and never see tutorials for it, so I hope this encourages people to try it!
  18. Here is a tutorial for the Grayscale Model Maker in the free program Slicer, specifically for modeling pubic bones since they are used in anthropology for age and sex estimation. The Grayscale Model Maker is very quick and easy! And I can't stand the "flashing" in the Editor. For this example, I am using a scan from TCIA, specifically from the CT Lymph Node collection. Slicer Functions used: Load Data/Load DICOM Volume Rendering Crop Volume Grayscale Model Maker Save Load a DICOM directory or .nrrd file. Hit Ok. Make sure your volume loads into the red, yellow, and green views. Select Volume Rendering from the drop-down. Select a bone preset, such as CT-AAA. Then click on the eye next to "Volume." ...Give it a minute... Use the centering button in the top left of the 3D window to center the volume if needed. Since we only want the pubic bones, we will use the ROI box and Crop Volume tools to isolate that area. To crop the volume check the "Enable" box next to "Crop" and click on the eye next to "Display ROI" to open it. A box appears in all 4 windows. The spheres can be grabbed and dragged in any view to adjust the size of the box. The 3D view is pretty handy for this so you can rotate the model around to get the area you want. The model itself doesn't have to be perfectly symmetrical because you can always edit it later. Once you like the ROI, we can crop the volume. To crop the volume, go to the drop-down in the top toolbar, select "All Modules" and navigate to "Crop Volume." Once the Crop Volume workspace opens, just hit the big Crop button and wait. You won't see a change in the 3D window, but you will see your slice views adjust to the cropped area. At this point, you can Save your subvolume that you worked so hard to isolate in case your software crashes! Select the Save button from the top left of the toolbar and select the .nrrd with "subvolume" in the file name to save. Now we will use the All Modules dropdown to open the Grayscale Model Maker. If you want to clear the 3D window of the volume rendering and ROI box, you can just go back to Volume Rendering, uncheck the Enable box and close the eyes for the Volume and ROI. When using the Grayscale Model Maker, the only tricky thing here is to select your "subvolume" from the "Input Volume" list, otherwise your original uncropped volume will be used. Click on the "Output Geometry" box and select "Create a new Model as..." and type in a name for your model. Now move down to "Grayscale Model Maker Parameters" in the workspace. I like to enter the same name for my Output Geometry into the "Model Name" field. Enter a threshold value: 200 works well for bone, but for lower density bone, you might need to adjust it down. Since the Grayscale Model Maker is so fast, I usually start with 200 and make additional models at lower values to see which works best for the current volume. ***Here is where I adjust settings for pubic bones in order to retain the irregular surfaces of the symphyseal faces.***The default values for the Smoothing and Decimate parameters work well for other bones, but for the pubic symphyses, they tend to smooth out all the relevant features, so I slide them both all the way down. Then hit Apply and wait for the model to appear in the 3D window (it will be gray). You can see from the image above that my model is gray, but still has the beige from the Volume Render on it since I didn't close the Volume Rendering. If for some reason you don't see your model: 1) check your Input Volume to make sure your subvolume is selected, 2) click on that tiny centering button at the top left of your 3D window, or 3) go to the main dropdown and go to "Models." If the model actually generated, it will be there with the name you specified, but sometimes the eye will be closed so just open it to look at your model. Now we an save your subvolume and model using the Save button in the top left of the main toolbar. You can uncheck all the other options and just save the subvolume .nrrd and adjust the file type of your model to .stl. Click on "Change Directory" to specify where you want to save your files and Save! This model still needs some editing to be printable, so stay tuned for Pt. 2 where I will discuss functions in Meshlab and Meshmixer. Thanks for reading and please comment if you have any issues with these steps!
  19. Version STL

    21 downloads

    This is a skull of a 43yo male that I modeled from TCIA from the QIN-HEADNECK collection, which is available under a Creative Commons Attribution 3.0 Unported License. I modeled it in Mimics and cleaned it up (as best I could) for printing with Meshlab and Meshmixer. I have printed it on a Robo3D. To prep for printing, I used the Plane Cut tool in Meshmixer to slice posterior to the mandible, making a front and back half. Then I cut the front half down the midsagittal line. I used white MakerBot PLA, 200 micron resolution, outer perimeter print speed of 20 mm/s, 3 perimeter shells, 25% infill. I have printed the two halves of the front but not the back yet!

    Free

×
×
  • Create New...