Jump to content

BryceMooney

Administrators
  • Content Count

    28
  • Joined

  • Last visited

1 Follower

About BryceMooney

  • Rank
    Advanced Member

Recent Profile Visitors

488 profile views
  1. Dr. Mike will be presenting at the 2018 Mayo Collaborative 3D Printing in Medical Practice where he will talk about segmentation and Open Source in medical 3D printing. You can see a schedule of his talks here.
  2. Hello QOQNOOS, Are you looking for CT scans which you can then use with democratiz3D? Will an STL file work? Have you looked in the lower leg extremity category here on embodi3d.com? https://www.embodi3d.com/files/category/17-extremity-lower-leg/ In this category, there are many STL files ready for 3D printing which may meet your requirements.
  3. Version 1.0.0

    383 downloads

    There are four STL files for 3D printing demonstrating a moderate secundum atrial septal defect (ASD) and a mild coarctation. An atrial septal defect is a birth defect of the heart in which there is a hole in the wall (septum) that divides the upper chambers of the heart (atria). A hole can vary in size and may close on its own or may require surgery. If one of these openings does not close, a hole is left, and it is called an atrial septal defect. The hole increases the amount of blood that flows through the lungs and over time, it may cause damage to the blood vessels in the lungs. Damage to the blood vessels in the lungs may cause problems in adulthood, such as high blood pressure in the lungs and heart failure. Other problems may include abnormal heartbeat, and increased risk of stroke. MRI obtained for evaluation of distal arch and pulmonary veins due to findings of pulmonary overcirculation out of proportion to typical ASD pathophysiology. The MRI provided a complete anatomic overview and quantified the right sided enlargement from the 2:1 shunt through the ASD. Due to saturation band nulling of blood returning through the right sided pulmonary veins, there was excellent definition of the ASD due to the "dark" blood mixing with the "bright" blood and outlining the borders of the ASD which transfers to the model very well. Please keep in mind, that the model represents a heart in end-systole rather than diastole. Disclaimer: The available model has been validated to demonstrate the case’s pathologic features on a Z450 3D printer, (3DSystems, Circle Rock Hill, South Carolina)(or other printer as appropriate). While the mask applied to the original DICOM images accurately represents the anatomic features, some anatomic detail may be lost due to thin walled structures or inadequate supporting architecture; while other anatomic detail may be added due to similar limitations resulting in bleeding of modeling materials into small negative spaces. However, intracardiac structures, relationships, and pathologic features represent anatomic findings to scale and in high detail. Credit: The model is provided for distribution on Embodi3D with the permission of the author, pediatric cardiologist Dr. Matthew Bramlet, MD, and is part of the Congenital Heart Defects library. We thank Dr. Bramlet and all others who are working to help children with congenital heart problems lead normal and happy lives. It is distributed by Dr. Bramlet under the Creative Commons license Attribution-NonCommercial-NoDerivs. Please respect the terms of the licensing agreement.

    Free

  4. Version 1.0.0

    181 downloads

    These congenital heart defect STL files demonstrate Partial Anomalous Pulmonary Venous Return (PAPVR). In PAPVR, one or two of the pulmonary veins returns blood to the right atrium instead of the left atrium. This causes oxygen-rich blood to flow back to the lungs instead of on to the rest of the body. Because some oxygen-rich blood is continually flowing between the lungs and the right atrium, the right chambers of the heart may become dilated. Over time, this may cause an abnormal heart rhythm (arrhythmia). In addition, too much blood flow to the lungs may increase the pressure in the lung's blood vessels, leading to a condition called pulmonary hypertension. If only one of the pulmonary veins is affected by the disorder, there may not be any symptoms. If two of the veins are affected, there may be shortness of breath during heavy exercise. Aortic coarctation is also present. Coarctation of the aorta is a narrowing of the aorta, the main blood vessel carrying oxygen-rich blood from the left ventricle of the heart to all of the organs of the body. Coarctation occurs most commonly in a short segment of the aorta just beyond where the arteries to the head and arms take off, as the aorta arches inferiorly toward the chest and abdomen. There are three STL files for 3D printing this model in slices. A whole model STL file is also available for 3D printing. Demonstrated is a bicuspid aortic valve and history of coarctation repair within the first week of life by end to end anastomosis. MRI obtained for evaluation of distal arch. MRI findings: • PAPVR of left upper lobe to innominate vein: Qp:Qs of 1.4:1 • Mild residual narrowing of second transverse segment of the aortic arch. • Moderate post-stenotic dilation of aorta MRI images obtained at end-systole due to tachycardic heart rate during exam. RV End-systolic volume is 36.3 ml. LV End-systolic volume is 30.06 ml. MRI methods: A GE 1.5T HDxt system was used for the 3D HEART sequence which used a 3D respiratory-navigated balanced SSFP (steady state free precession) multi-slab sequence with T2 preparation that provides whole heart coverage with high contrast-to-noise ratio between vessels and myocardium. Due to the relatively fast heart rate of 122 bpm, the fat saturation was turned off to decrease the time needed for the prepatory pulse brining the acquisition window earlier into the cardiac cycle so that it could be centered on the quiescent stage of end systole. The sequence was run with the following parameters: TR 3.4, TE 1.4, Freq 224, Phase 160, RR 8, and fat sat off. Learning: The MRI identified previously un-diagnosed partial anomalous pulmonary venous return. However, the Qp:Qs fell within acceptable left to right shunting of < 1.5:1 and there was insignificant RV, RA enlargement. The MRI evaluation of the coarctation repair revealed a good repair with only mild narrowing, which appeared more severe by echo due to the post-stenotic dilation. Disclaimer: The available model has been validated to demonstrate the case’s pathologic features on a Z450 3D printer, (3DSystems, Circle Rock Hill, South Carolina)(or other printer as appropriate). While the mask applied to the original DICOM images accurately represents the anatomic features, some anatomic detail may be lost due to thin walled structures or inadequate supporting architecture; while other anatomic detail may be added due to similar limitations resulting in bleeding of modeling materials into small negative spaces. However, intracardiac structures, relationships, and pathologic features represent anatomic findings to scale and in high detail. Credit: The model is provided for distribution on Embodi3D with the permission of the author, pediatric cardiologist Dr. Matthew Bramlet, MD, and is part of the Congenital Heart Defects library. We thank Dr. Bramlet and all others who are working to help children with congenital heart problems lead normal and happy lives. It is distributed by Dr. Bramlet under the Creative Commons license Attribution-NonCommercial-NoDerivs. Please respect the terms of the licensing agreement.

    Free

×
×
  • Create New...