mattjohnson

Member With Blog
  • Content count

    43
  • Joined

  • Last visited

  • Days Won

    3

Everything posted by mattjohnson

  1. Very few infectious diseases in recent years have commanded the kind of attention and concern that Zika Virus has. Although Zika outbreaks have been reported in Africa, Southeast Asia and other parts of the world since the 1952, recent announcement by the Center for Disease Control and Prevention (CDC) confirming its link with microcephaly has forced everyone to sit up and take notice. The CDC estimates that the current pandemic is widespread with at least 50 countries reporting active Zika transmissions at this time. Most people with Zika virus infection will not have any symptoms though some may experience mild fever, conjunctivitis, muscle and joint pain, and headaches. The virus is primarily transmitted by the Aedes mosquito. However, pregnant women may pass the infection to their babies, which may lead to microcephaly, a neurological condition associated with an abnormally small brain in the infant. The condition can lead to birth defects ranging from hearing loss to poor vision and impaired growth. Prompt diagnosis and treatment of Zika virus infections in pregnant women can, nonetheless, lower the risk of microcephaly to a great extent. Researchers have, therefore, put in a lot of time, money and effort to find a solution, and as always, three-dimensional (3D) medical printing and bioprinting technologies are leading the way. Understanding the Disease To begin with, 3D printing has played a crucial role in conclusively establishing the link between Zika virus and microcephaly. Researchers at John Hopkins Medicine used 3D bioprinting technology to develop realistic models of brain that revealed how the virus infects specialized stem cells in the outer layers of the organ, also known as the cortex. The bioprinted models allowed researchers to study the effects of Zika exposure on fetal brain during different stages of pregnancy. The models are also helping the scientists with drug testing, which is the obvious next stage of their research. Zika Test Kit Engineers at Penn’s School of Engineering and Applied Science, under the leadership of Professor Changchun Liu and Professor Haim Bau, have developed a simple genetic testing device that helps detect Zika virus in saliva samples. It consists of an embedded genetic assay chip that identifies the virus and turns the color of the paper in the 3D printed lid of the device to blue. This can prompt healthcare professionals to send the patient for further testing and to initiate treatment. Unlike other Zika testing techniques, this screening method does not require complex lab equipment. Each device costs about $2, making Zika screening accessible to pregnant women from the poorest parts of the world. Treating Microcephaly The scientists at the Autonomous University of the State of Morelos (UAEM) in Mexico are relying on the additive printing technology to create a microvalve that may help treat microcephaly in infants. The valve reduces the impact of the neurological disease and slows its progression by draining out excessive cerebrospinal fluid associated with this disorder. It can be inserted into the infant brain through a small incision to relieve fluid pressure and provide space for normal development. Researchers estimate the device will be available for patient use by 2017. These examples clearly demonstrate the impact of 3D printing on every aspect of the fight against Zika virus from diagnosing the disease to treating it. The results have been extremely promising, and both researchers and healthcare professionals are immensely hopeful that additive printing technology will help them overcome the infection quickly and effectively.
  2. Thanks for sharing your story and success with 3D printing. How much did the casts cost?
  3. Physicians across the globe have relied on surgical interventions for centuries to treat complex illnesses and injuries. High quality surgical instruments have played an important role in their success. Nonetheless, healthcare professionals are constantly looking for tools that would improve patient outcomes and minimize the risk of unwanted complications. In recent times, three-dimensional (3D) medical printing and bioprinting technologies have allowed doctors and engineers to develop innovative tools that help perform invasive procedures with greater ease. Robotic Surgical Tools Mechanical engineering students at Brigham Young University (BYU), under the guidance of their professors Barry Howell, Spencer Magleby, and Brian Jensen, combined additive printing technology and the ancient art of Origami to create surgical tools that can fit through 3mm wide incisions. Inside the body, the tools can unfold and expand into complex devices such as D-core tools. Minute incisions allow for quick healing eliminating the need for sutures and scars. The tools are highly precise and effective as well. Researchers at BYU are now collaborating with California-based Intuitive Surgicals to manufacture their products. The company is using 3D printing to develop both the prototypes and the actual tools. The 3D printing technology is also helping Intuitive Surgicals to create instruments with fewer parts making the entire process more cost-effective and stable. The Pathfinder ACL Guide Orthopedic surgeon Dr. Dana Piasecki of the OrthoCarolina Sports Medicine has developed a 3D printed surgical tool to conduct ACL surgeries with improved success. Currently, most surgeons drill a hole in the patient’s tibia to remove the torn anterior cruciate ligament and replace it with a graft. The procedure is painful, and the graft often fails to anchor properly. The Pathfinder ACL Guide, created by Dr. Piasecki in collaboration with Strasys Direct Manufacturing, has a 95 percent chance of placing the graft at the right position and helping it withstand the stress associated with extensive movement. The surgical tool is made from a biocompatible and flexible metal and is significantly cheaper than the existing devices. The Pathfinder ACL Guide has been registered with the FDA as a class I medical device and can now help thousands of amateur and professional athletes to continue playing their game in spite of an ACL tear. Eyelid Wands and Forceps Similarly, Dr. Bret Kotlus, a New York-based cosmetic surgeon, has used 3D printing technology to create customized tools for eyelid surgeries. His stainless steel Eyelid Wand helps surgeons lift excess eyelid skin and point it to various facial structures as per the needs of the patient. The handle of the tool consists of a ruler for accurate measurements. Dr. Kotlus has also developed 3D printed Pinch Blepharoplasty Marking Forceps that allow surgeons to mark excessive skin with a gentle ink. It comes with a round tip and a built-in ruler handle for additional patient comfort. These tools also add some sophistication to the doctor’s office at an affordable price. Close to 50 million surgical inpatient procedures are performed across the United States each year. While recent times have seen a significant improvement in the way these interventions are carried out, a lot can be done to make the process more efficient and safe. This is where 3D printing is bound to make a huge impact in the near future. Sources: Johnson & Johnson Adopts Cutting Edge 3D Printing for the Future of Medical Devices 3d printed eyelid instrument designed by Dr. Kotlus 3D Printed Tool Offers New Option for ACL Surgery Researchers Combine Origami, 3D Printing in Quest for Smaller Surgical Tools
  4. Since the 1980s, three-dimensional (3D) medical printing and bioprinting technologies have been influencing almost every aspect of the human life. Most people are, however, surprised at the kind of impact additive printing is having in the field of medicine. The technology is helping diagnose and treat complex illnesses ranging from cancer and heart disease to arthritis and infections. In recent months, several innovative 3D tools have also been created to overcome obesity. More than two-thirds of adults in the United States are obese or overweight. The prevalence of obesity has doubled in children and quadrupled in adolescents in the last 30 years. This has increased the risk of Type II diabetes, cancer and other serious conditions in men and women of all ages and abilities. Both government agencies and nonprofit organizations have spent millions of dollars creating awareness about the issue. Consequently, many people now understand the importance of healthy diet and exercise. They, however, lack resources that will help them accomplish such goals. Physicians are also looking for tools that will assist them in treating morbid obesity more effectively. Thankfully, 3D printing technology is offering some novel solutions to everyone, and researchers believe that it will ultimately bolster the efforts aimed at reducing weight and enhancing fitness levels. Liposuction Tools BioSculpture Technology, under the leadership of New York Downtown Hospitals and the Presbyterian New York affiliated plastic surgeon Robert Cucin, is relying on 3D printing to develop an innovative line of surgical instruments to perform liposuction. The technology is also allowing surgeons to create exact replicas of the patient’s organs and practice the procedure before the actual intervention. Together, these products are making liposuction more accessible and safe. Liposuction is an invasive procedure that involves removal of excess fat from various parts of the body and is commonly used treat obesity. Close to 400,000 people underwent this surgery in 2015, as per the American Society of Aesthetic Plastic Surgery. Tracking Devices Exertion Games Lab in Melbourne, Australia, has created a simple device that can print 3D models of the user’s physical activity time, sleep time, and heart rate during the week to motivate and encourage them to set new challenges. Unlike smartphones and pedometers, the Exertion Games Lab device caters to the needs of children as it helps them grasp complex fitness-related information with ease. Children can also hold these models in their hands and share their enthusiasm with their peers. The Potential These examples just form the tip of the iceberg. The impact of 3D printing on the fight against obesity is expected to go beyond creating mechanical devices and surgical instruments. Tamara Nair, a Research Fellow at the Centre for Non-traditional Security (NTS) Studies in the S. Rajaratnam School of International Studies (RSIS), believes that the technology can also be used to create food products with higher nutritional value. Such foods may help obese and overweight individuals manage calorie intake according to their activity level. The 3D printing technology can also make nutritious foods more palatable, says Nair. These potential benefits may appear like science fiction to some readers. Nonetheless, if the recent advances in the 3D printing and bioprinting technologies are anything to go by, they may turn into reality very soon.
  5. In spite of extensive research, the medical fraternity has not reached a consensus on what causes cancer and how it should be treated. Nonetheless, almost everyone agrees that early and accurate diagnosis is crucial for successful recovery. In fact, early detection can lead to a 70 percent decline in cervical cancer mortality, as per the Canary Foundation. Early diagnoses of colon cancer can increase the patient’s five-year survival rate from 11 percent to 91 percent. Almost 100 percent of the patients with breast and prostate cancer survive for more than five years when the condition is revealed at an early stage. Consequently, millions of dollars are being spent on developing and improving diagnostic techniques such as MRI scans, CT scans, PAP smears and mammograms. While these procedures have been immensely successful, they can be very expensive and may not be accessible to everyone. Some screening methods are associated with bleeding and other unwanted side effects. They can also lead to false-positive and false-negative reactions. Surprisingly, three-dimensional (3D) medical printing and bioprinting technology is paving the way for newer cancer screening techniques that are more sensitive, specific and cost effective. The technology allows the user to deposit desired materials on a substrate in a specific pattern to create medical devices, implants and prosthetics as per the needs of the patient. Simplified Blood Testing Miriam, a 3D printed blood testing device from Miroculus, uses proprietary microRNA detection technology and digital microfluids to identify early stage cancer at the molecular level. The company is focusing on gastric cancer at this time and has collaborated with the National Institute of Health to conduct clinical trials for the diagnostic device. The goal is to provide doctors with a simple tool to identify patients who require additional testing. This can help save thousands of dollars in the long run and make cancer screening available to patients in the poorest parts of the world. Printing the Ducts Another major challenge is to identify malignant tumors accurately. Doctors estimate that about 20 to 50 percent of breast tumors become invasive. However, the oncologists cannot determine which ones would worsen with time and hence, end up treating every patient with expensive and harmful medications. Researchers at University of Pittsburgh Medical Center and Carnegie Mellon University are relying on the 3D printing technology to print the duct between the mammary gland and the nipple. They hope to use the duct to grow breast tumors artificially in the lab and detect biomarkers that identify potentially malignant tumors. Mobile Devices Israeli startup MobileODT has developed a 3D printed mobile accessory known as the Mobile Coloscope. The doctors can attach the accessory to any smartphone and use it to click magnified images of the cervix. The images can help diagnose cervical cancer at an early stage. A disproportionately large number of women die of cervical cancer in the developing world due to inaccurate and delayed diagnosis. MobileODT hopes their device will help physicians overcome this hurdle. The success of these prototypes is inspiring other scientists to find novel cancer screening methods using 3D printing. Several projects have received millions of dollars in grant money with both healthcare professionals and scientists betting heavily on this technology. Soon, 3D printed devices may change the way physicians diagnose and treat cancer, and thereby help lower mortality rates significantly.
  6. Significant thinning or loss of hair can have a detrimental impact on the individual’s overall quality of life. Men and women with unhealthy hair often suffer from emotional issues and low self-esteem. The condition may also be indicative of an underlying medical problem. As per the American Hair Loss Association, two-thirds of American men experience some hair loss by the age of 35 and about 80 percent of them have significant thinning of hair by the age of 50. Approximately half of women over the age of 50 also suffer from serious hair loss. Apart from genetics and lifestyle, certain medications and infections can also contribute to the condition. You will find a variety of hair loss treatments in the market today ranging from herbal products to surgical interventions. However, none of these solutions have succeeded in producing dramatic results in a consistent manner. Researchers are, therefore, looking at three-dimensional (3D) medical printing and bioprinting to find products that really work, and their efforts seem to be paying off. 3D Printing Technology to Create Cranial and Hair Implants AdviHair, a subsidiary of London-based AdviCorp PlC, has developed a unique set of cranial prosthetics known as the CNC Hair Replacement System. The company uses 3D printing technology to create implants that conform to the patient’s scalp measurement and skin color. The product can help conceal partial or full scalp baldness associated with Alopecia. Once the prosthetic scalp is placed in position, it behaves like regular hair. You can swim, wash and style it the way you want. The product is expected to benefit more than 6.8 million Americans suffering from Alopecia, an autoimmune disorder that occurs when the patient’s immune system destroys his own hair follicles. The prosthetics are ideal for individuals who cannot undergo transplantation or other Alopecia treatments. Cosmetic giant L’ Oreal has collaborated with French bioprinting company Poietis to print hair follicles that will enhance their understanding of hair biology. The process involves creation of a digital map that indicates the exact position of the living cells and other tissue fragments. The digital map is used to generate instructions for the printing process. A pulsing laser bounces off a mirror through a lens and knocks one micro-droplet of the bio-ink into its position. Approximately 10,000 such droplets are deposited each second. L’Oreal is hoping to use this technology to create products that will treat and prevent hair loss at a realistic price. Improved 3D Printing Software for Hair Implants Although 3D printed cranial prosthetics and hair implants are gaining popularity, many of them take several hours to print. Researchers at Massachusetts Institute of Technology’s Media Lab are, therefore, working on a software platform called Cilllia that allows users to print hair-like structures within minutes. Additionally, researchers at the institute are looking beyond the aesthetics to explore other major functions of the follicles including adhesion, sensing, thermal protection and actuation. Hair loss can be stressful and overwhelming, and the treatments can be expensive. Many patients experience poor results in spite of their best efforts. Scientists are now using 3D printing to overcome the drawbacks associated with conventional treatments, and their recent success is offering hope to the millions of hair loss sufferers across the globe.
  7. test after - processed

    Version 1.0.0

    0 downloads

    test after - processed

    Free

  8. Implantable medical devices help diagnose and treat serious health conditions ranging from anatomical abnormalities to cardiovascular illnesses and kidney diseases. Commonly used devices include implantable cardioverter defibrillators, pacemakers, intra-uterine devices, spine crews, hip implants, metal screws, and artificial knees. Recent years have seen a significant increase in the use of such implants, which has led to the creation of several innovative products with improved function. Batteries play a crucial role in the successful operation of certain implantable devices. Most products rely on lithium cells that are powerful and easy to use. These electrochemical power sources can, however, lead to toxic side effects. Some patients may also experience biocompatibility issues. Healthcare professionals, nonetheless, had limited options, at least until now. The 3D Printed Battery Researchers at Carnegie Mellon University are aiming to overcome the drawbacks associated with traditional batteries by developing biodegradable versions made from natural ingredients. They have developed a prototype battery that can provide 5 milliWatts of power for up to 18 hours. This energy is enough to deliver medications slowly over a span of several hours or to detect the growth of pathogenic bacteria within the body. The battery is made from melanin pigment found in skin, hair and nails. The pigment protects the body by absorbing ultraviolet light and toxic free radicals. It also has the ability to bind to metallic ions and can therefore, transform into the perfect battery material. While melanin can form either the anodic or the cathodic terminal of the battery, magnesium oxide is used as the second terminal and the GI fluid comprises the electrolyte. The materials are housed in a three-dimensional (3D) printed capsule made from polylactic acid, or PLA. A 3D printer allows researchers to deposit the desired materials on a substrate in a specific pattern. It was invented in the 1980s to create engineering prototypes. Soon, researchers began using 3D printers in the field of medicine to improve patient outcomes. The technology helps customize the shape and the size of the outer capsule as per the needs of the consumer. The 3D printed capsule maintains the structural integrity of the battery and allows it to glide smoothly through the device. The capsule can dissolve quickly once it completes the essential functions. Other natural components within the battery can also degrade without producing any toxic side effects. The Future Currently, most ingestible and degradable probes and drug delivery systems remain in the body for about 20 hours. Although melanin batteries are less powerful when compared to their lithium counterparts, researchers believe that they could work very well with devices that remain in the body for only a few hours. The new battery is in the initial stages of development and will need to undergo extensive clinical testing before actual use. Nonetheless, it is a step in the right direction. Eventually, it may be possible to create more powerful versions of edible batteries that can support all types of medical devices, irrespective of their duration of use.
  9. In August 2015, the U.S. Food and Drug Administration (FDA) approved the first three-dimensional (3D) printed drug for commercial use when it allowed Pennsylvania-based Aprecia Pharmaceuticals to manufacture and market its anti-epileptic pill Spritam. The company relied on additive printing technology to create a rapidly dissolving pill that could be consumed with very little water. One of the main goals was to benefit patients who are unable to swallow medications, especially during an epileptic fit. The licensed ZipDose technology used by Aprecia Pharmaceuticals combines formulation and material science with additive printing technology. The process involves deposition a thin layer of the powdered medicine on a substrate followed by the addition of a liquid to bind the particles into porous layer. The process is repeated multiple times to create a pill of the desired size and concentration. The success of Spritam has encouraged Aprecia Pharmaceuticals to use ZipDose technology to develop medications for other serious illnesses as well. Dosage – Additive printing allows pharma companies to print drugs at specific dosages. Consequently, the patients do not have to suffer from poor prognosis associated with low-dose medications or consume high doses of drugs that can lead to unwanted side effects. As 3D printing technology becomes more prevalent in the pharmaceutical world, doctors can request for a specific dose of the drug instead of choosing from the available options. Solubility – Although rapidly disintegrating, porous pills have been in use for several years, they usually provide lower doses of the active ingredient. Three-dimensional printing technology has allowed Aprecia Pharmaceuticals to add up to 1,000 mg of the potent drug into one Spritam pill while retaining its solubility. This can benefit a large section of the population including young children, elderly, and patients suffering from complex neurological disorders. Compatible shape – Additive printing also helps produce pills in a variety of shapes and sizes, as per the needs of the consumer. Drug companies can produce small batches of the drug based on specific demand. Distribution of Production and Distribution – Unlike large machines, 3D printers are easy to setup and operate. The manufacturer can shift the production of the drug to a location that is closer to the consumer and thereby, lower transportation and distribution costs and reduce wait times for patients with potentially life-threatening conditions. Simplify Research and Development - 3D printing can also simplify research and development of new medications by making the process more efficient and cost-effective. Potential compounds can be printed in the laboratory and tested on 3D printed organs and cell lines for immediate results. Recent developments in additive printing have forced most drug companies to sit up and take notice. They are investing millions of dollars in the technology to speed up drug development. While the time to replace medication prescriptions with printer algorithms is not yet here, 3D printing is bound to have a huge impact on the way companies develop and manufacture drugs in the near future. Sources: http://www.computerworld.com/article/3048823/3d-printing/this-is-the-first-3d-printed-drug-to-win-fda-approval.html https://www.asme.org/engineering-topics/articles/manufacturing-design/3dprinted-drugs-does-future-hold http://www.npr.org/sections/thetwo-way/2015/08/04/429341196/your-pill-is-printing-fda-approves-first-3d-printed-drug
  10. The three-dimensional (3D) medical printing and bioprinting industry is evolving at a rapid pace as 3D printers continue to move beyond research labs into commercial manufacturing facilities and hospitals. The printers are being used to create anatomical models, customized implants and even body parts that help treat, manage and prevent complex illnesses and injuries. The technology has contributed to the success several challenging surgical interventions in the recent times. Three-dimensional Printing Systems While scientists are using 3D printers for a variety of purposes, most physicians are relying on them to create patient-specific models of targeted organs and tissues. Healthcare professionals obtain accurate dimensions of the patient’s body parts from radiological images and feed the information into a computer to print exact replicas of the organs. These models help the surgeons assess the abnormality with precision and practice the surgery before the actual procedure. Several consumer-friendly 3D printing systems have been created to meet these needs. Belgium-based Materialise offers Mimics inPrint system that allows physicians to directly import patient images from hospital PACS and use them for 3D printing. The product comes with DICOM compatibility that supports all types of imaging machines. The semi-automated segmentation and editing tools within the printer’s software system ensure error-free printing and enhanced communication. Materialise sets up the entire system and trains the hospital staff to operate it efficiently. Stratasys Inc. also offers additive printing technology to hospitals across the globe. It has the widest variety of materials ranging from clear, rubberlike and biocompatible photopolymers to rigid and flexible composite materials in over 360,000 colors. The Medical Innovation Series from Stratsys has been created for physicians, medical device designers, clinical educators and other professionals in the healthcare industry. Success Stories Twelve National Health System (NHS) hospitals in the United Kingdom are relying on Stratsys printers to create models that allow surgeons to analyze patients’ condition, test implants and practice surgical interventions for better outcomes. Most popular 3D models at NHS hospitals include jaw bones for facial reconstruction surgeries, hip models for hip replacements, forearms for repairing deformed bones, and cranial plastics for fixing holes in a person’s skull. Doctors Without Borders, the Italian humanitarian organization, is also using 3D printed replicas of hospital models to setup new ventures in remote areas of the world. The technology allows physicians to have a realistic experience and thereby, improve patient care. Several other healthcare facilities are also using additive printing technology for increased efficiency. Physicians at Hong Kong’s Queen Elizabeth Hospital used 3D printing technology to help a 77-year-old woman suffering from two damaged valves. The patient had already undergone three open heart surgeries and needed a complex fourth intervention. The 3D printed model helped the doctors complete the surgery in just four hours. In another case, surgeons at Children’s Hospital in Colorado and engineers at Mighty Oak Medical created a 3D model of a patient’s spine to rehearse the surgery. The physicians also used additive printing technology to print customized brackets to treat the patient’s scoliosis. These success stories are inspiring other hospitals to install 3D printers at their facilities. They would, however, require expertise to handle the printer and tools to eventually use the 3D model for clinical purposes. Several facilities are incorporating 3D printing training programs to build knowledge within the institution and to lower the lead times for the actual procedure. While the initial investment may appear significant, most experts agree that 3D printing technology can be a game changer as it can help physicians improve clinical outcomes and reduce costs associated with complicated surgical interventions.
  11. Three-dimensional (3D) printing technology was invented in the 1980s to create mechanical prototypes for the manufacturing sector. Healthcare professionals and researchers soon realized the potential of this novel technology in the field of medicine and began depositing desired materials on specific substrates to create anatomical models, surgical instruments, prosthetics and even body parts that could be customized to meet the needs of the user. Scientists rely on MRI and CT scan images of the patients to obtain the exact dimensions for the target object, feed the image data into one or more software programs, and let the 3D printer do its job. Millions of dollars have been spent on 3D medical printing and bioprinting research in last decade, and such endeavors have led to the creation of several innovative solutions. Nonetheless, many of these products can't benefit the patients until they come with the Food and Drug Administration’s (FDA) seal of approval. Recently, the federal agency woke up to the needs of the 3D medical printing industry and issued guidance for 3D printed medical devices based on design, manufacturing and device testing information. Many 3D printed products have received FDA approval, some of which are highlighted below. The O2 Vent a 3D Printed Solution for Sleep Apnea In April, 2016, Oventus, an Australian startup, received FDA approval for its titanium mouth device called the O2 Vent. The customizable oral device contains airways that reach the back of the patient’s mouth bypassing obstructions caused by nose, soft palate or tongue. The 3D printed device is expected to benefit over 37 million Americans suffering from sleep apnea while helping Oventus enter the $50 billion global sleep disorder market. Spritam, the FDA approved 3D Printed Drug In another bold step, the FDA approved a 3D printed drug, Spritam, to treat partial onset seizures, myoclonic seizures and primary generalized tonic-clonic seizures. Its manufacturer, Aprecia Pharmaceuticals, used the ZipDose 3D printing technology to create a pill that disintegrates in the mouth with very little water and is especially beneficial to patients who cannot swallow their medication during seizures. The high-dose drug can impact over 2.4 million American adults with epilepsy, as per an article published in the March, 2016, edition of Forbes. Lateral Spine Truss System Another innovative product, the Lateral Spine Truss System, also received a go-ahead from the federal agency in 2016. It consists of 3D printed orthopedic implants, manufactured by 4WEB Medical, that allow for integrated instrumentation and customization. They come in sterile packs and can be used with most mainstream spinal surgery techniques. The goal is to deliver functional implants with a structural design. CASCADIA Cervical and CASCADIA AN Lordotic Oblique Interbody Systems The FDA has also issued a 510 (K) clearance to K2M for CASCADIA Cervical and CASCADIA AN Lordotic Oblique Interbody Systems with Lamellar 3D Titanium technology. While CASCADIA Cervical Interbody System is an intervertebral body fusion device, the CASCADIA AN Lordotic Oblique Interbody System has been designed for transforaminal-lumbar interventions. K2M expects its product to help the approximately 800,000 men and women who undergo cervical fusion each year. 3D Printed Cranial Implants Brazilian and U.S. based BioArchitects collaborated with Swedish 3D printing company ArcamAB to generate patient-specific cranial implants. The company used Electron Beam Melting technology and lightweight titanium alloys to form the implants. Although the FDA approval is restricted to the non-loadbearing bones of the skull and face, healthcare professionals are hopeful that the technology can treat a variety of conditions ranging from trauma to congenital abnormalities. While 3D printed products with FDA approvals strive to become more accessible to all patients, others are waiting in the pipeline for a green light from the agency. Licensing requirements include extensive lab testing and clinical evaluation. Doctors and scientists are, however, confident the products will meet the criteria and get the necessary endorsements from the FDA to eventually help transform medicine. Sources: http://www.news-medical.net/news/20160407/Oventus-gains-FDA-clearance-for-medical-device-designed-to-alleviate-snoring-OSA.aspx http://www.todaysmedicaldevelopments.com/article/3d-printed-medical-device-4web-8316/ http://www.meddeviceonline.com/doc/k-m-enhances-d-printed-spine-portfolio-featuring-lamellar-d-titanium-technology-0001
  12. NHS hospital

  13. Advances in science and technology are helping pharmaceutical companies and biotech giants to come up with novel molecules that may help treat serious and life-threatening conditions such as cancer, heart disease, and Alzheimer’s disease. However, bringing a new drug to the market can get complex and exhaustive. While most companies pass through the initial stages of drug development with ease, they face a lot of challenges during pre-clinical and clinical trials. Recent numbers reveal that only one in 5,000 drugs become accessible to patients. The biopharmaceutical industry spends over $31.3 billion on research and development each year. They also face a lot of ethical questions related to animal testing. Nonetheless, this scenario may soon change as additive printing technology becomes more accessible and dependable. Additive printing, also known as three-dimensional (3D) printing, involves deposition of desired materials on substrates to obtain 3D objects with specific dimensions and characteristics. Many different types of 3D printers are available in the market. Some machines help the user print mechanical and non-living objects. Others can print living tissues and cells when relevant biomaterials are added in controlled environments. Researchers across the globe have already succeeded in printing complex tissue fragments and even small organs such as ears using 3D printers. 3D Printed Systems for Drug Testing Organovo, a leader in 3D printing technology, has created multicellular, dynamic and functional 3D human tissue models for research and pre-clinical testing. As per the company’s website, the printed tissue will remain viable in vitro for a significant period of time while exhibiting all the structural and functional features of the actual tissue. Pharmaceutical companies can use these fragments to study the impact of new drugs on human cells and to predict the final outcome with greater accuracy. Organovo claims that its exVive3D will help researchers “assess biochemical, genomic, proteomic, and unique histologic endpoints.” Nano3D BioSciences, a Texas-based startup, has collaborated with AstraZeneca and LC Sciences to develop a cell-based assay system to assess the effects of a panel of vasodilating and vasoconstricting compounds. The company hopes that the assay will soon become a standard in toxicity testing and in the development of cardiovascular drugs. Similarly, a Canadian company, Aspect Biosystems, allows researchers to create customized tissue fragments for drug testing. The researchers will place specific cells in a hydrogel and print tissue fragments that are allowed to grow in an incubator until they achieve the desired dimensions. The components will resemble the target tissue in structure and function. Researchers at University of California, San Diego, have printed tissue fragments that closely mimic the human liver. According to Shaochen Chen, a NanoEngineering professor at the University, most companies spend 12 years and about $1.8 billion to create one FDA-approved drug. Their 3D printed liver tissue can help companies to perform pilot studies with minimal effort instead of waiting for animal testing or clinical trials, and thereby save millions of dollars. Benefits Apart from making pre-clinical trials more accessible and efficacious, 3D printed tissues also help drug companies overcome ethical issues associated with animal testing. Most researchers agree that animal testing is expensive, time-consuming and often inhumane. The animals require a lot of care, and this limits the number of tests that can be performed at a time. Additionally, results obtained from animal testing may not correlate with actual results in humans. The 3D printed tissue fragments help overcome such obstacles and may eventually allow drug companies to simplify research and development. In the long run, it may also help reduce costs and make therapeutics more accessible and effective for everyone. Sources: http://thenextweb.com/insider/2016/03/29/3d-printing-changes-pharmaceutical-world-forever/#gref http://eandt.theiet.org/news/2016/aug/3d-bioprinting.cfm
  14. The three-dimensional (3D) medical printing and bioprinting market has exploded in the last decade with the invention of several new printers that can print everything from anatomical models to living cells. Each new machine has contributed in its own way to the success of this industry. However, only a few of them have impacted the field of medicine the way BioBot 1 has done in the recent years. BioBots, a Philadelphia-based startup, hopes to use 3D printing technology to cure diseases, eliminate organ transplantation wait times, reverse climate change, and promote life on other planets. Their BioBot 1 desktop 3D printer is capable of printing live tissues from human cells. The low-cost machine is making bioprinting technology accessible to everyone from major universities to small research labs and is thereby, helping transform medicine and biology. The History of BioBiots The BioBots printer began as a dorm room project for two of its co-founders who were biology and computer science students at the University of Pennsylvania. Their initial prototype won a university competition and a $50,000 grant through the Dreamit Health program. The team began building smaller, cheaper and more efficient printers and is currently targeting biotech and pharma majors that spend millions of dollars on clinical research. The printer may help the companies generate specific cells lines and tissue fragments to test their therapeutics. Unique Features of the BioBots Printer The popularity of the BioBots printer is not without a reason. The machine comes with several novel features and a small footprint. It can essentially fit into most bio-safety hoods and allows the researchers to work in a sterile environment with ease. The printer uses standard petri dishes and 96-well plates to simplify the printing process. The user can upload designs, choose biomaterials and eventually print the tissue fragments with minimal effort. The BioBots 1 printer uses visible blue light to cure biomaterials quickly without damaging the cells. It includes a compressed air pneumatic system with a pressure range of 0 to 10 PSI that accommodates a variety of viscous materials and helps achieve specific start and stop points. The linear rails guarantee 10-micron precision. The printer also has two heated extruder heads to achieve temperatures between room temperature to 120 degrees. The Bio-Ink BioBots 1 printer also differs from its rivals in the type of bioink it uses. The support material maintains the structural integrity of the cells during the printing process and prevents their degradation after the printing is complete. The user also opts for a scaffold or a matrix gel prior to adding the cells and printing the final tissue fragments. BioBots offers a large selection of products for its printers including support bioinks, sacrificial bioinks, matrix base reagents, matrix ECM proteins, matrix print enhancers, and curing bioinks. The company has also created a bioink open source allowing researchers to improve the technology further. Potential Uses of BioBots Printers Although BioBots is currently pitching its product to companies and research institutes involved in drug development, most experts are hopeful that the use of this printer will expand further to benefit patients waiting for organ transplants. Researchers at Drexel University are using the BioBots 1 to print bone tissue while University of Michigan professors are using it to print nerve tissue. Physicians may soon be able to print compatible body parts with lower risk of rejection prior to transplantation surgeries for greater success. BioBots 1 printer definitely holds a competitive edge due to its small foot print, ease of use, wide selection of bioinks, and lower price. The company is investing millions of dollars on improving the performance of the machine, and if recent developments are an indication, the BioBots is bound to play an important role in diagnoses, treatment and prevention of complex diseases in the near future.
  15. BioBots

  16. When a 77-year-old patient at Hong Kong’s Queen Elizabeth Hospital needed a complex heart surgery, the surgeons at the facility relied on three-dimensional (3D) medical printing for additional support. The patient was suffering from two damaged valves and had already undergone three open heart surgeries. Her body was not ready for a fourth intervention. The doctors decided to replace the damaged valves by making a small incision through her blood vessels. However, such an intervention had never been performed. A 3D printer helped the doctors create an exact replica of the patient’s heart and practice the intervention several times. They completed the actual procedure successfully in just four hours. 3D Printing Heart Helps with Cardiovascular Surgical Planning Surgeons at pediatric cardiac surgery center at the People’s Hospital in China also used a 3D printed model of the patient’s heart to analyze the anatomical abnormalities closely prior to the surgery. Their nine-month-old patient was born with malpositioned pulmonary veins and an atrial septal defect. The surgeons acknowledged that the anatomical model contributed significantly to the success of the intervention. Researchers in other parts of the world are also looking at additive printing or 3D printing technology to treat and manage cardiovascular illnesses more efficiently. The technique involves deposition of desired materials on a substrate in a predetermined manner to print an object of choice. Healthcare professionals believe that this revolutionary tool will help millions of patients suffering from heart disease and stroke. An estimated 17.5 million people died globally from such conditions in 2012, as per the World Health Organization. They were also responsible for one in four deaths across the United States, as per the Center for Disease Control and Prevention. 3D Printing Blood Vessels The use of 3D printing technology is not limited to the creation of anatomical models. Scientists at Saga University in Japan used the Kenzan method of 3D printing to develop 2mm by 5 mm blood vessels for patients with myocardial infarction. The researchers used tiny vertical spikes to position the cells and form tubular structures in a nutritious broth. Traditionally, cardiologists replaced the damaged blood vessels of the heart with healthy ones from other parts of the body. However, finding compatible replacements without impacting other physiological functions has been a challenge. The 3D printed implants can be customized as per the needs of the patient and can be used to replace the damaged veins and arteries with precision. Cyfuse Biomedical is employing tissue engineering techniques as they work to bring bioprinted nerves, blood vessels, cartilage, liver and heart muscle to the clinic. 3D Printing Heart Valves In another instance, scientists at Denver University custom printed heart valves that are the replicas of the original ones. Researchers obtained specific dimensions of the valves from CT and MRI scans and bioprinted them in just 22 minutes. Denver researchers are currently working to improve the biocompatibility of the 3D printed valves. The ultimate goal is to design patient-specific implants with a low risk of graft rejection. Given these developments, healthcare professionals and scientists are immensely hopeful about the development of a 3D printed heart. The biggest challenge, lies in creating a network of functional blood vessels that will allow the organ to survive in the body for a prolonged period of time. While the idea of printing a human heart may seem far-fetched, it is evident that 3D printing is influencing cardiovascular disease management in a big way. Sources: http://www.chinadaily.com.cn/china/2016-03/17/content_23921711.htm https://www.regmednet.com/users/3641-regmednet/posts/11230-nerve-and-blood-vessel-regeneration-using-3d-bioprinting-technologies http://www.thedenverchannel.com/money/science-and-tech/denver-university-researchers-use-3d-bioprinter-to-create-artificial-body-parts
  17. Recent developments in the field of three-dimensional (3D) medical printing and bioprinting can revolutionize the way doctors approach ear disorders. The technology, also known as additive printing, allows the user to deposit a desired material on a specific substrate in a pre-determined manner to create 3D prints with definitive shapes and sizes. Scientists and healthcare professionals are already relying on this technology to create surgical instruments, anatomical models, diagnostic tools, prosthetics and even body parts. These novel solutions are offering hope to more than 360 million men, women and children across the globe who suffer from some form of hearing loss. 3D Printing and Smart Phones Make for Easy and Affordable Diagnoses Recently, students of A&M Texas University’s chapter of Engineering World Health used a 3D printer to create LED ostoscope smartphone attachments that take pictures of the patients’ inner ears and help diagnose conditions contributing to hearing loss. Unlike traditional ostoscopes that cost hundreds of dollars, these smartphone attachments can be built for just $6.42. Doctors working in underprivileged areas of South Asia, Asia Pacific and Sub-Saharan Africa can depend on this imaging device for accurate diagnosis, prompt treatment and effective prognosis. 3D Printed Hearing Aids Ontenna, a simple hairclip with a built-in hearing aid, is another glowing example of the way 3D printing technology is impacting Otology. The 3D printed device picks up sounds between 30 and 90 decibles and translates them into 256 different vibrations and light patterns that allow the wearer to actually feel and see the sound. Ontenna was developed by Tatsuya Honda, a researcher and sign language interpreter, who worked closely with the deaf community and understood the drawbacks of traditional hearing aids. The device is currently in the testing phase and may soon be available for commercial use. 3D Printing and Ear Prosthetics In another pioneering attempt, physicians at Royal Hospital for Sick Children in Edinburgh, Scotland, under the supervision of Dr. Ken Stewart, adopted the 3D printing technology to treat microtia, a congenital disorder characterized by underdeveloped ears. Traditionally, children with this condition were required to lay down in an MRI machine for a significant period of time while the doctors obtained a 2D tracing of the normal ear. Understandably, most children were overwhelmed by the process and became fearful of it. Doctors in Edinburgh are now using a 3D scanner to obtain the exact dimensions of the child’s ear. A 3D printer then creates a replica of the organ, which is sterilized and used during the carving process. Dr. Stewart is also working with Edinburgh University’s Centre for Regenerative Medicine and Chemistry Department to bioprint an ear using the patient’s own stem cells and is very excited about the potential of 3D printing in managing hearing loss. 3D Printing the Ear A study published in the October, 2015, edition of the journal Nature Biotechnology revealed that researchers have succeeded in printing human-sized ears with the help of the Integrated Tissue and Organ Printing System (ITOP) and have implanted them into mice. The implanted organs retained their shape over the next two months and formed blood vessels and cartilages. Success of ITOP in animal models is a big step in the right direction as it will allow doctors to print complex ear implants that are stable and functional. Most people take their sense of hearing for granted. However, many conditions ranging from infections and injuries to fluid problems can impact it. Physicians and patients are looking for treatments that will help overcome deficiencies associated with existing modalities, and 3D printing technology is helping them do just that. Sources: http://thebridge.jp/en/2015/08/ontenna-lets-you-hear-sounds-through-your-hair http://www.bustle.com/articles/142312-3d-printed-ear-jaw-muscle-implants-are-revolutionizing-medical-technology
  18. Three-dimensional bioprinting and medical printing technologies are influencing the field of ophthalmology in a big way. Quingdao Unique, a Chinese bioprinting company, had announced in 2015 that they will be able to print 3D corneal implants within a year. Their products will be available for animal testing initially, and if everything goes as per plan, their 3D printed human corneas could be ready for clinical trials in the next two to three years. The company’s third generation bioprinter provides optimal conditions for cell growth with a temperature range of 0 to 50 degrees Celsius, humidity regulation range of 80 to 98 percent, and pH of 7.0 to 7.5. Quingdao plans to overcome strength and flexibility issues associated with most human implants by using the patient’s own cells for printing. Ophthalmologists across the globe are very excited about this development. Corneal transplants help treat vision loss due to infections, congenital deformities and injuries. In fact, cornea is the most commonly transplanted organ in the United States with over 40,000 patients receiving a new one each year, as per the American Transplant Foundation. Yet, 53 percent of the world’s population does not have access to corneal transplantations, as per a global survey published in the February, 2016, edition of the journal JAMA Ophthalmology. Additionally, many patients experience complications when their immune systems reject the transplanted graft. Three-dimensional bioprinting is, however, expected to change all that. Scientists and healthcare professionals can rely on additive printing technology to deposit patient’s own cells and other compatible materials in a pre-determined manner on a desired substrate to create patient-specific implants with a lower rate of rejection. The 3D bioprinting technology also accounts for the natural anatomical variations that exist among humans. Doctors can refer to radiological images of the patients’ eyes to generate implants that have the same dimensions as the original one. 3D Printing Aids in the Diagnosis of Glaucoma and Other Eye Diseases Dr. Andrew Bastawrous, a Kenya-based eye surgeon, created a smart phone app to diagnose eye diseases such as glaucoma, macular degeneration and diabetic retinopathy. The app relies on the patient’s perception of the various orientations of the letter “E” to provide the diagnoses. A small 3D printed adapter can be added to the camera of the smartphone to obtain an image of the retina on the screen of the phone while administering the test. This technology is helping Dr. Bastawrous diagnose and treat thousands of patients with eye diseases in underprivileged areas of sub-Saharan Africa. Ophthamology Surgical Planning The use of 3D printing is not limited to corneal transplantations. Surgeons can use this technology to create models of the patient’s eyes and practice the procedure before the actual intervention. This preparation “would allow a full appreciation of the anatomic relationships between the lesions and the complicated surrounding structures,” as per an article published in the journal Investigative Ophthalmology and Visual Science. This invaluable tool has also transformed clinical practice and education. Researchers are using a 3D Systems Z650 printer to produce “highly realistic” 3D prints of orbits that offer enhanced visualization of the delicate nerves of the eye. The 3D models are made from non-human materials and thereby, help avoid the ethical questions associated with cadaver specimens. These recent developments only form the tip of the iceberg. Nonetheless, they clearly exemplify the limitless possibilities of 3D printing in ophthalmology. The technology is bound to simplify the treatment of eye diseases and improve patient outcomes dramatically.