Jump to content

Leaderboard


Popular Content

Showing content with the highest reputation since 02/12/2020 in all areas

  1. 2 points
    I remember seeing 3D printed skulls from CT scans many years ago at JPAC, the Joint POW MIA Accounting command based at Pearl Harbor in Hawaii. It was a pretty cool idea to study the 3D printed models so that the original remains could be buried, thus giving families closure, etc. I think there is great potential in anthropology for this type of technology.
  2. 1 point

    Version 1.0.0

    0 downloads

    An aneurysm of the abdominal aorta in close proximity to horseshoe kidney. Presurgical model. The operation is ongoing. Honestly, I'm pretty happy with the result (and also the surgical team, which ordered the model). I printed it on Prusa MK3S, the kidney with the veins and the distal parts of the arteries with white Esun PLA, the aorta with red 3dJake Eco PLA, on 0,150mm layer height. The kidney is printed on 30% gyroid infill and 2 perimeters, with support on build plate only plus several support enforcers. The aorta is with 4 perimeters and 100% concentric infill, with support on build plate only and few support blockers. I glued them together with cyanacrylic glue and used a touch of red acrylic paint to make the glued parts more appealing. It took 300 grams of plastic and the printing time was 36 hours because of the kidney. aorta, aneurysm, horseshoe, kidney, presurgical, 3d, printing, celiac, trunk, vessels, mesenteric, superior, inferior, iliac, common, external, internal, abdomen, infrarrenal, organ, vascular, abdominal,

    $25.00

  3. 1 point
    Wow, that is pretty cool! Thanks for sharing!
  4. 1 point
    Yes definitely! I would definitely like to see it applied more to unidentified remains.
  5. 1 point
    Do any of you print 3d models to sell? This is a good article to keep in mind. ==== If you’re running a 3D printing service, or a product development company where you’re quoting customers on digital fabrication services, there’s a good chance that you’re pricing wrong. Here’s how I know. In the last five years, I’ve spoken to hundreds of 3D printing/Additive Manufacturing business owners about how they price their services and a vast majority of them undersell their services. The three primary reasons are either a combination or one of the following: They don’t take into account all of the ancillary components that go into running a business. They charge purely based on the volume of the CAD model not taking into account exponential price increases or decreases. Taking their slicer output of time to print and material usage too literal without physically measuring those parameters and taking into account #1 above. Based on those hundreds of hours of conversation combined with years of industry experience, I’ve developed a holistic methodology on how to price for 3D printed parts and projects that accounts for all aspects of the business (human/machine time, machine depreciation, software, facility cost) the size of the job, and the unique attributes of the parts. I’ll share that methodology with you today, but first, a little more context on how I got here. Mike Moceri, the founder and CEO of MakerOS. Back in 2013, while I was running a 3D printing service bureau, my team and I received an order from a Fortune 500 company to print them approximately 15,000 individual parts for a toy line. At the time, we were charging a little less than $1 per cubic centimeter printing in PLA and Nylon PA12, and that’s how we ended up pricing them for the job. The project ended up being a very challenging one (that’s a whole different story that you should ask me about at some point) and after some time gaining more experience over the years, I realized that, considering how immensely large the job was, we should have priced about 70% more than what we originally quoted. There’s a lot we didn’t factor for: the manual time it takes to prep, slice, validate, think through how to plate up and pull off parts; the software costs to execute all of those tasks; how long it actually took to print parts accounting for machine depreciation. It was quite a learning experience – in fact, it ultimately changed my life because I decided to do something about it, and I’m still doing it today. View the full article
  6. 1 point
    After several weeks of multi color/material printing with my FDM printer Prusa MK3 (I have other Printers too) with the Multi Material Unit 2 (MMU2) I'd like to share my results with you. Another interesting product regarding multimaterial is the Mosaic Palette 2. I don't own that unit at the moment but I know people who are using the system and I talked a lot with them about the unit so I will share their experience also with you. First of all, some general info. The Prusa MK3 costs as a build kit 769€ and fully assembled 999€. The MMU2 unit comes only as a kit and costs 300€. It can print with up to 5 materials. It can only be used with a Prusa printer out of the box. (Firmware is open source so in theory you could tinker it to work with other printers). Prusa has also their own (open source) slicer called Slic3er PE. The Palette 2 comes in two versions, the standard and the pro. Both versions can print with up to 4 materials. I highly recommend the pro version because it has a better warranty and comes with better quality parts. I also recommend the canvas hub option because it makes it easier to connect the system to your printer. That would result in a total prise of 878 USD. The Palette 3 can only be used with 3D printers that use 1.75 mm filament. So it can't be used with something like an Ultimaker. One more thing about filament. Prusa has now their own filament called Prusament. It is produced with a tolerance of +/- 0.02 mm in diameter. And you get a QR code with your spool to check the measuring yourself. Every spool is measured 100%. One (and only) advantage of the 2.85 mm filament that Ultimaker is using is that it is easier to produce precisely. If you are using 1.75 mm with +/- 0.02 mm that advantage is gone. First some thoughts on the MMU2. The MK3 produces very nice quality prints especially with high quality PLA like Prusament or PLA/PHA. That is mainly thanks to the Bondtech direct drive extruder. One other nice feature is the removable (magnetic flex steel) PEI bed. I guarantee you that if you are using this feature one time you will never never ever want a printer without it again. The basic principle of the system is that it adds a bowden system with a selector to the direct drive system. So the direct drive system pulls the filament up until the bowden system takes over. Than it switches the filament and the bowden system pushes the filament back to the direct drive gears. And so on ... As already mentioned it comes as a kit. And that is a BIG problem. Assembling it is not easy because you have to make sure that the filament path is as smoothly as possible. When you pull filament out from the hotend you can have tips with large strings or increased diameters. That will cause problems. To form the tips Slic3r PE has something called "ramming sequence". It tries to "form" the tips nicely like with no strings. This works good with Prusas own filament Prusament. It works also usually quite good with other filaments especially high quality ones like PLA/PHA. But there is no guarantee it works with the filament you are using so you might have to try different settings. So you have with the MMU2 basically two main problems. Assembling it so that everything runs perfectly smooth. And getting the ramming sequence settings right. A LOT of people are having problems with that. I had also try a lot out and it was frustrating at the beginning. I have now a working unit and prints are imho amazing. Now some words about the Palette 2 (pro). The principle of the machine is that it cuts the filaments and than splices them (melting) together. So you have one filament going out of the system with the right color combination for your model. It comes basically fully assembled. Installing the system to your printer takes maybe half an hour or so depending on your setup. So a LOT easier that the MMU2. One big problem right now is that their own slicer is very buggy and produces (especially on complex models) mediocre print quality. Sometimes it does even the color changes on the wrong location of the part. Combining your own more sophisticated slicer like Slic3er, Simplify3D or Cura with their system works also not reliably at the moment. Some general thoughts. Both systems produce purge towers. Every time when you change the color you have to get rid of the plastic from the old color in the hot end. How much you have to purge onto the tower is color dependent. E. g. switching from black to white or from PLA to BVOH as extreme scenarios. BUT as I mentioned the Palette splices the filaments together. That produces a color gradient in the filament of a few mm. That has to be purged additionally. So the purge amount of the Palette will always be bigger than the one of the MMU2. Slic3er PE has the option to "purge into infill" so it purges also into the objects infill. That option will come to the Palette 2 in the near future. I print a lot with BVOH and I know that it can work with the Palette too. But in both cases it adds complexity. Slic3er PE has the option for printing only support interface layers or completely supports with soluble material. I will start testing flexible materials in the near future. Customer support is pretty good with both companies. The forums are used very actively and you have also a very helpful chat support at Prusa. MMU2 Print: MMU2 Print: Kidney with tumor and magnet inserts MMU2 Fun prints: Palette slicing problems: Palette color gradient:
This leaderboard is set to Los Angeles/GMT-08:00
×
×
  • Create New...