Jump to content

Leaderboard


Popular Content

Showing content with the highest reputation since 03/23/2014 in all areas

  1. 3 points
    In the last few decades, the 4th industrial revolution began - a significant advance in the 3D technology and an emerging of a brand new production method - the computer-controlled additive/subtractive manufacturing. It is considered "the new wheel" and it gives the ability to generate a detailed three dimensional object with complicated geometry from various materials (metals, polymers, clay, biological macro molecules) with a robot, controlled by a computer. The size of the object don't really matters - it's possible to construct structures on micron level or entire buildings. The thing, which really matters, is the geometry of the model. The specialists in the 3D technology are able to bend the very fabric of the world in every shape, which is needed. In the medical field, this advancement of the 3D technology was combined with the rise of the computer-assisted imaging and the histological imaging techniques , visualizing the living (or already death) organisms in details, never seen before. This is how the profession of the medical 3D artist emerged, giving new hope and amazing possibilities for the presentation, diagnostics and treatment of the human body. It's a hybrid profession, which requires vast knowledge and experience in the medical, engineering and computer science. If you want to become one and you're wondering can you actually sell your work, this guide will be quite helpful for you. As any other type of scientists, medical 3D artists have to choose his career path. It can lead to a career as academical professor, teaching students and performing theoretical experiments at a university or a science institute or as a industrial R&D specialist, creating practical products for the biomedical corporations. Both career options have their pros and cons, bot of them are saving lives. The difference is in the way of thinking. And the salary. For both of them the entrance requirement is a PhD in the field life or engineering science. So, in order to become a medical 3D artist, you need to go in the academy for a while, to endure the hell of the dissertation/thesis and to keep your sanity at the end. Once achieved, it's really hard to stay unemployed for long, those pesky talent seekers will jump on you like flies on manure. 1. Academical: The academical lives and thrives in his/hers institution. An office, a laboratory, some teaching obligations and the ability to work in the most cutting-edge fields of science and technology. More flexibility/freedom: the academical have a lot of free time, as long as the basic obligations towards the institution are satisfied. Intellectual autonomy: the academical can follow whatever idea he/she wants, as long as it's supported by the institution. Long term results: the academical things and acts in long period of time - one project can take an year, several year or the entire lifespan, depending on the project. Funding/salary issues: the academical is always underfunded and the salary sucks (unless he/she is well quoted, successful professor). This is why the problem-solving abilities and the high IQ are required for this career path. Strong ego and self-confidence: the academical things for themselves as geniuses, much smarter than the rest of the population (and in most cases they are right). Always “speaks theoretically”: the question "what if" is the breath and butter of the academia and it's really hard for the academical to be practical. 2. Industrial R&D specialist: the industrial scientist works in a office or a warehouse, with a team of other specialists, under the supervision of a project manager. He/she develops practical products, which have to be sellable and they have to be developed fast. More constrained (deadlines): the usual industrial project takes several months, under strict supervision and have to satisfy the needs of the marketing department. The deadlines are an issue here. Produces a practical product: the product have a practical, well defined application, shape, quality requirements and price. Pays a lot more: the salaries of the industrial R&D have an additional zero at the end. No funding issues: the industrial projects have more than adequate budget and they can receive an additional funding, if needed. No ego issues – “it’s just a job” - for the industrial specialist, the work is just a meaning for living. A job, as good as any other job. No "special missions" here. Literally “saves the world”: the products of the industry are used as practical applications and are used for diagnostics and treatment on everyday basis. Professional levels: As any other profession, the medical 3D artist goes through several stages, each one with higher requirements and possibilities. Jobber: the lowest level of them all. A sporadic odd jobs, for a low salary, for whoever is willing to pay. This is the first level, which a wannabe medical 3d artist reach and the level, on which most of them stay. Only those, who can achieve the necessary discipline, business ethics and quality can reach the next level. The jobbers are unpredictable, chaotic, they can hardly satisfy the deadlines and they offer the lowest quality possible. Every medical 3D artist in training is also a jobber. Freelancer: the selective few, who are talented and discipline enough to be able to offer NDA, contract, quote statement, production method description and industrial quality control. Those are the medical 3D artists, who doesn't suck, but wants to be free and flexible enough to follow their other interests. The freelancer is hired from companies and institution, which can't support a full-job 3d artist or their specialist are not competent enough to make the job done. A proud, well-respected person, working under strict business ethics, for fixed pay rate, usually calculated per hour or per item. The freelancer works on small projects, for a limited period of time and under well-defined condition, written on an official contract. Every professional medical 3D artist is also a freelancers. The reputation have a big importance in this group, which is why the freelancers are considered predictable, disciplined and competent to do any task, thrown at them. The salary here depends on the negotiating skills of the freelancer. Contractor: Those freelancers, who have the necessary business talent and are willing to take some risks, can make a company with several employees, several 3d printers, a convenient website with good portfolio and a variety of services. Such a company can take bigger orders from large institutions (hospitals or industrial companies), which requires a higher level of expertise, speed of service and quality control. Those contracts are for a longer period of time, under fixed condition, pricing and quality of the service. CEO: Those are the contractors, who are able to survive and to thrive, eventually can become big corporations, with hundreds of employees and millions dollars budgets. All of the current corporations started as small companies. Believe it or not, the biggest 3d printing companies (3D Systems, Stratasys. Ultimaker and many more) started as small, family-oriented companies, which became the gigantic corporations they are today. How they made it? I really want to know the answer of this question. So, most likely, you're a talented young (or not-so-young) individual with medical background, who watched some tutorials, made several models (most likely bones) and 3d printed them with a cheap 3d printer. Confident with your results, you think you can make a living with this amazing job and you're wondering how to start. My start was a bit rough, because I was trying to make a model of Pyramidal neuron in the Telencephalon for my department from a 10Gb Z-stack in Tif format with zero knowledge how to do it. This is how I found this website in first place. Few days later the model was done and when I tried to make my first bone models, it was way too easy, compared to the neuron. The rest is a lot of trails and errors, a lot of youtube tutorials, several kilograms of textbooks and the support of my colleagues. Here are some tips what you need to do in order to become a freelancer: Portfolio: If you want to sell your work, you have to present it first. Sketchfab.com is a very good way to do it, because it have an amazing 3d viewer with various awesome animation options. If you want to present your work, you just have to paste the link, because it's a zero-footrpint system - all you need to use it is a web browser. It's an excellent choice for 3d visualization and it's also free. The more models you're adding, the bigger audience you'll have and you don't have to worry what kind of 3d viewer your potential clients are using. Downloadable models: My personal choice is 30% paid models and 70% free ones. I'm a PhD student, I don't have some immediate need of money, so I can afford that. I'm dividing my models into regular and premium ones. In this way my models can be useful for everyone, both business parties or poor students around the world. It's really hard to find a good medical model for a presentation or a small university project and if you manage to find one, it's most likely from this website. Quote: When you're starting a job for someone, make sure that you have an accurate quote for your task in written format. Something like that: "I will generate ??? 3D models of a ??? (system, organ, structure) from CT/MRI datasets, which will include the following structures (soft tissues, bones, arterial/venous vessels etc. etc.) in ??? days for a ??? USD per hour, ??? hours per model, ??? USD per model". The more accurate you are, the better. This gives you the framework, in which you're working. Everything outside this frameworks is an extra and it should be payed as well. Your clients will try to change the conditions of your quote, this is why you need something written to control this process. Make sure you specify the currency, $ can mean a US dollar or a Mexican peso! NDA: Some clients will requite a mutual non-disclosure agreement, which you have to print, sign, scan and send back to the client. If you don't have such a document signed, you can do whatever you want with the model and you don't have to explain yourself to your client. You can afford a lower price for a model without NDA, because you can sell it or upload it as free download anyway. If you have such a document, just forget about the model, don't share it, don't show it and don't print it - you don't want to be sued by a medical company, they are more powerful than you. Contract: You should have a standard freelancers contract, in which you should apply the quote statement. Most of the cases, the quote statement is enough. Production method: You have to specify your production parameters like software, methods and operations. Something like that: "Segmentation of the abdominal aorta with Slicer 3D, exporting of the model as stl file, modelling and sculpting (smoothing, remeshing, boolean operation etc etc) in Meshmixer, postprocessing (slicing, magnet sockets, hinges etc etc) in Fusion 360, importation of the model into Slicer 3D for subsequent quality control, including ??? measurements of the dataset, the model and generation of average deviation". Don't be too precise, just the basic operations you're using with the corresponding software. Make sure you're not using a cracked software in your production method, everything you're using should be owned by you! 3D printed models: It's a good idea to have a set of 3d printed models, which can be presented on conferences, exhibitions and your social media page. This is a good commercial for your work, which is also a way for popularisation of the medical 3D modelling. Deadlines: Be precise in your work and follow the deadlines! As an old proctologist from my med school used to say - it's better to mess your finger than your reputation. If you're good in your work, you'll be hired again. Invoice: As with the contract, you should have a standard freelancers invoice, which you should send to your client. All those documents increases your credibility and are considered as signs of professionalism. If you're keeping your professional level high, you'll have better clients and higher pay rate. Freelancers websites: It's a good idea to have profiles in several freelancers websites. Most of your clients will contact you in person, but most likely they'll find you on those websites. Linkedin is a must. Patreon and facebook are also a good bet. Pricing: The usual salary for 3d modelling is between 30 and 60$ per hour, depending on the complexity of the task and the presence of an NDA. The most useful pricing for 3d printing is 1,5-2$ per hour of 3d printing. The smaller slide thickness and the bigger models requires significantly more time and a bigger price. You should also include all the postprocessing you're using (sanding, airbrushing, magnets, varnishes etc etc). 3D printing: For small operations, two or three 3d printers are enough. Good budget options are Ender 3 (FDM) and Elegoo Mars (DLP). Prusa MK3 and Form 2 are better, more expensive options, which will make your life much easier. Keep your printers in good condition and provide a regular maintenance. Choose several brands of polymers and stick to them, you don't want surprises, why you're chasing a deadline. Have fun: It doesn't matter what you're doing and how much you're making by doing it. Just have some fun! 3D printing is amazing, highly contagious activity, but it can become a burden, if you're not enjoying it. And always remember - with your work you're developing the medical science and you're literally saving lives.
  2. 3 points
    This is a time of rapid growth in medical 3D printing. The technology allows us to take an individual patient’s scan information and create physical models, which can be used in any number of clinical applications. The industry standard DICOM image files from CT and MRI scanners can be converted into 3D files, such as STL (for stereolithography) files. These digital models can then be uploaded to a 3D printing service bureau or printed on one of the currently available professional grade printers.The democratization of desktop 3D printers, however, now allows almost anyone with a serious interest in the technology to print models in their own office/workshop. These can be used for educational purposes and for prototyping, and represent an excellent entrée into the technology. Recently, I started printing 3D models of some of my own patient’s scans using a consumer grade desktop printer. The patient’s CTs were acquired on our Toshiba Aquillion 64 Slice CT scanner using our standard acquisition protocols. The DICOM volume data was then burned to a CD for processing. For my initial test prints, I used the Materialise Mimics and 3-matic software under their 30-day free trial period. The images from the appropriate volume were imported into the Mimics software. Thresholding is then performed to isolate the tissues in question, based on its Hounsfield units, a measurement of X-ray density. The particular anatomy of interest is then selected using “region growing” tools and a 3D model is generated. The model is then “wrapped”, to account for the individual CT slices, and to smooth any gaps in the 3D mesh. Choosing the degree of wrapping is where experience comes into play. Too little wrapping can cause gaps to be present on your final models. Too much, and detail can be lost. The 3D model is then exported into the 3-matic program for “local smoothing” of the model. The digital model is then hollowed, depending on the structure and its use. You then export it as a binary STL file. In all of the steps above, clinical knowledge of the anatomy is extremely helpful in creating the most accurate models possible. Understanding how the models will be used informs your decisions in their creation. The STL file is then imported into a slicing software to create the G-code files that instruct the printer how to actually create the physical model. I used the open source Cura software for the generation of the G-code for the printer. An image of the 3D model is seen superimposed in a representation of the build plate of the particular printer, in my case the Ultimaker 2 (Ultimaker B.V.). The model can be rotated to optimize the printing process. The highest resolution of current 3D prints from fused filament printers is in the z-direction: from the bottom on the build plate to the top of the object. The degree of overhang must also be taken into account. Since the filament cannot be deposited in thin air, the slicing software creates a scaffold to support the overhanging material. Keep in mind; this support structure must be physically removed in post-processing. The slicing software also creates a thin base layer of the material (called a brim or raft) that is deposited around the object to facilitate print adherence to the print platform. The generated G-code is saved to an SD card, which is then placed into the printer. In some cases, the files can be transferred wirelessly. I used 2.85 mm PLA filament to create the printed models. PLA is polylactic acid, a biodegradable material derived from cornstarch. PLA based material has been used in orthopedics for sutures, controlled release systems, scaffolding for cartilage regeneration, and fixation screws. The print time takes several hours, depending on the size and complexity of the model, as well as the amount of support structure used. Through trial and error, I found that careful positioning of the 3D model on the virtual build plate can potentially shorten the length of printing time. A full-scale hollow abdominal aortic aneurysm model took about 9 hours to print, while a full-scale scapula took 13 hours. A life-size pediatric skull will take approximately 23 hours to print! The use of 3D printing in medicine presents enormous potential. Exponential development of many new applications will occur if researchers, students and clinicians have access to small-scale 3D printers for prototyping new devices and procedures. The future is only limited by the imagination. A method of reimbursement wouldn’t hurt either. I would like to thank Frank Rybicki, MD, Professor and Chair of Radiology, University of Ottawa, and his team from the Applied Imaging Science Laboratory at Brigham and Women's Hospital for their great 3D Printing Hands-on courses at RSNA 2014. Copyright ©2015 Eric M. Baumel, MD
  3. 3 points
    We are happy to receive recognition for being a top influencer in 3D printing. Thanks to all the members of this community who are helping us bring the benefits of biomedical 3D printing to the world! The Management.
  4. 2 points
    I remember seeing 3D printed skulls from CT scans many years ago at JPAC, the Joint POW MIA Accounting command based at Pearl Harbor in Hawaii. It was a pretty cool idea to study the 3D printed models so that the original remains could be buried, thus giving families closure, etc. I think there is great potential in anthropology for this type of technology.
  5. 2 points

    Version 1.0.0

    263 downloads

    This is an anonymized CT scan DICOM dataset to be used for teaching on how to create a 3D printable models., tutorial, 3d, printing, model, dataset, ct, dicom, base, skull, head, petrous, ridge, mastoid, cells, clivus, atlas, axis, cervical, spine, neck, muscles, infrahyoid, suprahyoid, trachea, lower, turbinate, pharynx, larynx, esophagus, prevertebral, bone, 3d,

    Free

  6. 2 points
    valchanov

    Medical 3D printing 101

    Single versus multiple segmentation - Back and forth technique There are many challenging cases, in which the single segmentation is not enough. The paranasal sinuses and the congenital heart defects are notable examples. My usual workflow was to segment whatever I can as good as it's possible, to clean the unnecessary structures and the artefacts, to export the segmentation as stl 3d model and then to "CAD my way around". This is solid philosophy for simple, uncomplicated models, but for complex structures with a lot of small details and requirement from the client for the highest quality possible, this is just not good enough, especially for a professional anatomist like myself. Then I started to exploit the simple fact, that you're actually able to export the model as stl, to model it with your CAD software and then to reimport it back and convert it into label map again. I called this "back and forth technique". You can model the finest details on your model and then you can continue the segmentation right where you need it, catching even the slightest details of the morphology of the targeted structure. This technique, combined with my expertise, gives me the ability to produce the best possible details on some of the most challenging cases, including nasal cavity, heart valves, brain models etc. etc. To use this technique, just import the stl file, convert it into a label map (for 3D slicer - segmentation module/ export/import models and label maps). The main advantages of this technique are: 1. You can combine the segmentation with the most advanced CAD functions of your favorite software. Two highly specialized programs are better than one "Jack of all trades" (cough cough Mimics cough cough) 2. Advanced artefact removing. 3. Advanced small detail segmentation and modelling. 4. Combined with several markers (separate segmentations, several voxels in size) on the nearby anthropometric points, this technique increases the accuracy of the final product significantly. Without points of origin, the geometry of your model will go to hell, if you're not especially careful (yes, I'm talking about the 3D brushes in Slicer). 5. You can easily compare the label map with the 3d model, converted back. Every deviation, produced during the CAD operations will be visible like a big, shining dot, which you can easily see and correct. This is one of the strongest quality control techniques. 6. You can create advanced masks with all the geometrical forms you can possibly imagine, which you can use for advanced detail segmentation. Those masks will be linked with the spatial coordinates of the targeted structures - the stl file preserves the exact coordinates of every voxel, which was segmented. 7. You can go back and forth multiple times, as many as you like. 8. This technique is more powerful than the best AI, developed by now. It combines the best from the digital technologies with the prowess of the human visual cortex (the best video card up to date). The main disadvantages are: 1. It's time consuming. 2. It produces A LOT of junk files. 3. Advanced expertise is needed for this technique. This is not some "prank modelling", but an actual morphological work. A specialized education and practical experience in the human anatomy, pathology and radiology will give you the best results, which this technique can offer. 4. You need highly developed visual cortex for this technique (dominant visual sense). This technique is not for the linguistic, spatial-motor, olphactory etc. types of brains. Recent studies confirms, that a part of the population have genetically determined bigger, more advanced visual cortex (The human connectome project, Prof. David Van Essen, Washington University in Saint Louis). Such individuals become really successful cinematographers, designers, photographers and medical imaging specialists. The same is true for all the other senses, but right now we're talking about visual modality and 3D intellect (I'm sorry, dear linguists, musicians, craftsmen and tasters). It's not a coincidence that I have so many visual artists in my family (which makes me the medical black sheep). But if you don't have this kind of brain, you can still use the technique for quality control and precise mask generation. Just let the treshould module or the AI to do the job for you in the coordinates, in which you want (You should really start using the Segment Editor module in Slicer 3D). 5. You really need to love your work, if you're using this technique. For the usual 3D modelling you don't need so many details in your model and to "CAD your way around" is enough for the task. 6. You should use only stl files. For some reason, the obj format can't preserve the spatial geometry as good as the stl format. Maybe because the stl is just a simple map of vertex coordinates and the obj contains much more sophisticated data. The simple, the better. On the picture - comparison of the semilunar valves, made by treshould segmentation at 250-450 Hounsfield units (in green) and modelled and reimported model (in red).
  7. 2 points
    Note: This tutorial accompanies a workshop I presented at the 2016 Radiological Society of North America (RSNA) meeting. The workflow and techniques presented in this tutorial and the conference workshop are identical. In this tutorial we will be using two different ways to create a 3-D printable medical model of a head and neck which will be derived from a real contrast-enhanced CT scan. The model will show detailed anatomy of the bones, as well as the veins and arteries. We will independently create this model using two separate methods. First, we will automatically generate the model using the free online service embodi3D.com. Next, we will create the same file using free desktop software programs 3D Slicer and Meshmixer. If you haven't already, please download the associated file pack which contains the files you'll need to follow along with this tutorial. Following along with the actual files used here will make learning these techniques much easier. The file pack is free. You need to be logged into your embodi3D account to download, but registration is also free and only takes a minute. Also, you'll need an embodi3D.com account in order to use the online service. Registration is worth it, so if you haven't already go ahead and register now. >> DOWNLOAD THE FILE PACK NOW << Online Service: embodi3D.com Step 1: Go to the embodi3D.com website and click on the democratiz3D menu item in the naw bar. Click on the "Launch democratizD" link, as shown in Figure 1. Figure 1: Opening the free online 3D model making service service democratiz3D. Step 2: Now you have to upload your imaging file. Drag and drop the file MANIX Angio CT.nrrd from the File Pack, as shown in Figure 2. This contains the CT scan of the head and neck in NRRD file format. If you are using a file other NRRD that provided by the file pack, please be aware the file must contain a CT scan (NOT MRI!) and the file must be in NRRD format. If you don't know how to create an NRRD file, here is a simple tutorial that explains how. Figure 2: Dragging and dropping the NRRD file to start uploading. Step 3: Type in basic information on the file being uploaded, including File name, file description, and whether you want to share the file or keep it private. Bear in mind that this information pertains to the uploaded file, not the file that will be generated by the service. Step 4: Type in basic parameters for file processing. Turn on the processing slider. Here you will enter in basic information about how you would like the file to be processed. Under Operation, select CT NRRD to Bone STL Detailed, as shown in Figure 3. This will convert a CT scan in NRRD format to a bone STL with high detail. You also have the option to create muscle and skin STL files. The standard operation, CT NRRD to Bone STL sacrifices some detail for a smoother output model. Leave the default threshold at 150. Figure 3: Selecting an operation for file conversion. Next, choose the quality of your output file. Low-quality files process quickly and are appropriate for structures with simple geometry. High quality files take longer to process and are appropriate for very complex geometry. The geometry of our model will be quite complex, so choose high quality. This may take a long time to process however, sometimes up to 40 minutes. If you don't wish to wait so long, you can choose medium quality, as shown in Figure 4, and have a pretty decent output file in about 12 minutes or so. Figure 4: Choosing a quality setting. Finally, specify whether you want your processed file to be shared with the community (encouraged) or private and accessible only to you. If you do decide to share you will need to fill out a few items, such as which CreativeCommons license to share under. If you're not sure, the defaults are appropriate for most people. If you do decide to share thanks very much! The 3D printing community thanks you! Click on the submit button and your file will be submitted for processing! Now all you have to do is wait. The service will do all the work for you! Step 5: Download your file. In 5 to 40 minutes you should receive an email indicating that your file is done and is ready for download. Follow the link in the email message or, if you are already on the embodi3D.com website, click on your profile to view your latest activity, including files belonging to you. Open the download page for your file and click on the "Download this file" button to download your newly created STL file! Figure 5: Downloading your newly completed STL file. Desktop software If you haven't already, download 3D Slicer and Meshmixer. Both of these programs are available on Macintosh and Windows platforms. Step 1: Create an STL file with 3D Slicer. Open 3D Slicer. Drag and drop the file MANIX Angio CT.nrrd from the file pack onto the 3D Slicer window. This should load the file into 3D Slicer, as shown in Figure 6. When Slicer asks you to confirm whether you want to add the file, click OK. Figure 6: Opening the NRRD file in 3D Slicer using drag-and-drop. Step 2: Convert the CT scan into an STL file. From within Slicer, open the Modules menu item and choose All Modules, Grayscale Model Maker, as shown in Figure 7. Figure 7: Opening the Grayscale Model Maker module. Next, enter the conversion parameters for Grayscale Model Maker in the parameters window on the left. Under Input Volume select MANIX Angio CT. Under Output Geometry choose "Create new model." Slicer will create a new model with the default name such as "Output Geometry. If you wish to rename this to something more descriptive, choose Rename current model under the same menu. For this tutorial I am calling the model "RSNA model." For Threshold, set the value to 150. Under Decimate, set the value to 0.75. Double check your settings to make sure everything is correct. When everything is filled in correctly click the Apply button, as shown in Figure 8. Slicer will process for about a minute. Figure 8: Filling in the Grayscale Model Maker parameters. Step 3: Save the new model to STL file format. Now it is time to create an STL file from our digital model. Click on the Save button on the upper left-hand corner of the Slicer window. The Save Scene pop-up window is now shown. Find the row that corresponds to the model name you have given the model. In my case it is called "RSNA model." Make sure that the checkbox next to this row is checked, and all other rows are unchecked. Next, under the File Format column make sure to specify STL. Finally, specify the directory that the new STL file is to be saved into. Double check everything. When you are ready, click Saved. This is all shown in Figure 9. Now that you've created an STL file, we need to postprocessing in Meshmixer. Figure 9: Saving your file to STL format. Step 4: Open Meshmixer, and drag-and-drop the newly created STL file onto the Meshmixer window to open it. Once the model opens, you will notice that there are many red dots scattered throughout the model. These represent errors in the mesh and need to be corrected, as shown in Figure 10. Figure 10: Errors in the mesh as shown in Meshmixer. Each red dot corresponds to an error. Step 5: Remove disconnected elements from the mesh. There are many disconnected elements in this model that we do not want in our final model. An example of unwanted mesh are the flat plates on either side of the head from the pillow that was used to secure the head during the CT scan. Let's get rid of this unwanted mesh. First use the select tool and place the cursor over the four head of the model and left click. The area under the cursor should turn orange, indicating that those polygons have been selected, as shown in Figure 11. Figure 11: Selecting a small zone on the forehead. Next, we are going to expand the selection to encompass all geometry that is attached to the area that we currently have selected. Go to the Modify menu item and select Expand to Connected. Alternatively, you can use the keyboard shortcut and select the E key. This operation is shown in Figure 12. Figure 12: Expanding the selection to all connected parts. You will notice that the right clavicle and right scapula have not been selected. This is because these parts are not directly connected to the rest of the skeleton, as shown in Figure 13. We wish to include these in our model, so using the select tool left click on each of these parts to highlight a small area. Then expand the selection to connected again by hitting the E key. Figure 13: The right clavicle and right scapula are not included in the selection because they are not connected to the rest of the skeleton. Individually select these parts and expand the selection again to include them. At this point you should have all the geometry we want included in the model selected in orange, as shown in Figure 14. Figure 14: All the desired geometry is selected in orange Next we are going to delete all the unwanted geometry that is currently unselected. To start this we will first invert the selection. Under the modify menu, select Invert. Alternatively, you can use the keyboard shortcut I, as shown in Figure 15. Figure 15: Inverting the selection. At this point only the undesired geometry should be highlighted in orange, as shown in Figure 16. This unwanted geometry cannot be deleted by going to the Edit menu and selecting Discard. Alternatively you can use the keyboard shortcut X. Figure 16: Only the unwanted geometry is highlighted in orange. This is ready to delete. Step 6: Correcting mesh errors using the Inspector tool. Meshmixer has a nice tool that will automatically fix many mesh errors. Click on the Analysis button and choose Inspector. Meshmixer will now identify all of the errors currently in the mesh. These are indicated by red, blue, and pink balls with lines pointing to the location of the error. As you can see from Figure 17, there are hundreds of errors still within our mesh. We can attempt to auto repair them by clicking on the Auto Repair All button. At the end of the operation most of the errors have been fixed, but if you remain. This can be seen in Figure 18. Figure 17: Errors in the mesh. Most of these can be corrected using the Inspector tool. Figure 18: Only a few errors remain after auto correction with the Inspector tool. Step 7: Correcting the remaining errors using the Remesh tool. Click on the select button to turn on the select tool. Expand the selection to connected parts by choosing Modify, Expand to Connected. The entire model should now be highlighted and origin color. Next under the edit menu choose Remesh, or use the R keyboard shortcut, as shown in Figure 19. This operation will take some time, six or eight minutes depending on the speed of your computer. What remesh does is it recalculates the surface topography of the model and replaces each of the surface triangles with new triangles that are more regular and uniform in appearance. Since our model has a considerable amount of surface area and polygons, the remesh operation takes some time. Remesh also has the ability to eliminate some geometric problems that can prevent all errors from being automatically fixed in Inspector. Figure 19: Using the Remesh tool. Step 8: Fixing the remaining errors using the Inspector tool. Once the remesh operation is completed we will go back and repeat Step 6 and run the Inspector tool again. Click on Analysis and choose Inspector. Inspector will highlight the errors. Currently there are only two, as shown in Figure 20. These two remaining errors can be easily auto repair using the Auto Repair All button. Go ahead and click on this. Figure 20: running the Inspector tool again. At this point the model is now completed and ready for 3D printing as shown in Figure 21. The mesh is error-free and ready to go! Congratulations! Figure 21: The final, error-free model ready for 3D printing. Conclusion Complex bone and vascular models, such as the head and neck model we created in this tutorial, can be created using either the free online service at embodi3D.com or using free desktop software. Each approach has its benefits. The online service is easier to use, faster, and produces high quality models with minimal user input. Additionally, multiple models can be processed simultaneously so it is possible to batch process multiple files at once. The desktop approach using 3D Slicer and Meshmixer requires more user input and thus more time, however the user has greater control over individual design decisions about the model. Both methods are viable for creating high quality 3D printable medical models. Thank you very much for reading this tutorial. Please share your medical 3D printing designs on the embodi3D.com website. Happy 3D printing!
  8. 2 points
    If you are planning on using the democratiz3D service to automatically convert a medical scan to a 3D printable STL model, or you just happen to be working with medical scans for another reason, it is important to know if you are working with a CT (Computed Tomography or CAT) or MRI (Magnetic Resonance Imaging) scan. In this tutorial I'll show you how to quickly and easily tell the difference between a CT and MRI. I am a board-certified radiologist, and spent years mastering the subtleties of radiology physics for my board examinations and clinical practice. My goal here is not to bore you with unnecessary detail, although I am capable of that, but rather to give you a quick, easy, and practical way to understand the difference between CT and MRI if you are a non-medical person. Interested in Medical 3D Printing? Here are some resources: Free downloads of hundreds of 3D printable medical models. Automatically generate your own 3D printable medical models from CT scans. Have a question? Post a question or comment in the medical imaging forum. A Brief Overview of How CT and MRI Works For both CT (left) and MRI (right) scans you will lie on a moving table and be put into a circular machine that looks like a big doughnut. The table will move your body into the doughnut hole. The scan will then be performed. You may or may not get IV contrast through an IV. The machines look very similar but the scan pictures are totally different! CT and CAT Scans are the Same A CT scan, from Computed Tomography, and a CAT scan from Computed Axial Tomography are the same thing. CT scans are based on x-rays. A CT scanner is basically a rotating x-ray machine that takes sequential x-ray pictures of your body as it spins around. A computer then takes the data from the individual images, combines that with the known angle and position of the image at the time of exposure, and re-creates a three-dimensional representation of the body. Because CT scans are based on x-rays, bones are white and air is black on a CT scan just as it is on an x-ray as shown in Figure 1 below. Modern CT scanners are very fast, and usually the scan is performed in less than five minutes. Figure 1: A standard chest x-ray. Note that bones are white and air is black. Miscle and fat are shades of gray. CT scans are based on x-ray so body structures have the same color as they don on an x-ray. How does MRI Work? MRI uses a totally different mechanism to generate an image. MRI images are made using hydrogen atoms in your body and magnets. Yes, super strong magnets. Hydrogen is present in water, fat, protein, and most of the "soft tissue" structures of the body. The doughnut of an MRI does not house a rotating x-ray machine as it does in a CT scanner. Rather, it houses a superconducting electromagnet, basically a super strong magnet. The hydrogen atoms in your body line up with the magnetic field. Don't worry, this is perfectly safe and you won't feel anything. A radio transmitter, yes just like an FM radio station transmitter, will send some radio waves into your body, which will knock some of the hydrogen atoms out of alignment. As the hydrogen nuclei return back to their baseline position they emit a signal that can be measured and used to generate an image. MRI Pulse Sequences Differ Among Manufacturers The frequency, intensity, and timing of the radio waves used to excite the hydrogen atoms, called a "pulse sequence," can be modified so that only certain hydrogen atoms are excited and emit a signal. For example, when using a Short Tau Inversion Recovery (STIR) pulse sequence hydrogen atoms attached to fat molecules are turned off. When using a Fluid Attenuation Inversion Recovery (FLAIR) pulse sequence, hydrogen atoms attached to water molecules are turned off. Because there are so many variables that can be tweaked there are literally hundreds if not thousands of ways that pulse sequences can be constructed, each generating a slightly different type of image. To further complicate the matter, medical scanner manufacturers develop their own custom flavors of pulse sequences and give them specific brand names. So a balanced gradient echo pulse sequence is called True FISP on a Siemens scanner, FIESTA on a GE scanner, Balanced FFE on Philips, BASG on Hitachi, and True SSFP on Toshiba machines. Here is a list of pulse sequence names from various MRI manufacturers. This Radiographics article gives more detail about MRI physics if you want to get into the nitty-gritty. Figure 2: Examples of MRI images from the same patient. From left to right, T1, T2, FLAIR, and T1 post-contrast images of the brain in a patient with a right frontal lobe brain tumor. Note that tissue types (fat, water, blood vessels) can appear differently depending on the pulse sequence and presence of IV contrast. How to Tell the Difference Between a CT Scan and an MRI Scan? A Step by Step Guide Step 1: Read the Radiologist's Report The easiest way to tell what kind of a scan you had is to read the radiologist's report. All reports began with a formal title that will say what kind of scan you had, what body part was imaged, and whether IV contrast was used, for example "MRI brain with and without IV contrast," or "CT abdomen and pelvis without contrast." Step 2: Remember Your Experience in the MRI or CT (CAT) Scanner Were you on the scanner table for less than 10 minutes? If so you probably had a CT scan as MRIs take much longer. Did you have to wear earmuffs to protect your hearing from loud banging during the scan? If so, that was an MRI as the shifting magnetic fields cause the internal components of the machine to make noise. Did you have to drink lots of nasty flavored liquid a few hours before the scan? If so, this is oral contrast and is almost always for a CT. How to tell the difference between CT and MRI by looking at the pictures If you don't have access to the radiology report and don't remember the experience in the scanner because the scan was A) not done on you, or you were to drunk/high/sedated to remember, then you may have to figure out what kind of scan you had by looking at the pictures. This can be complicated, but don't fear I'll show you how to figure it out in this section. First, you need to get a copy of your scan. You can usually get this from the radiology or imaging department at the hospital or clinic where you had the scan performed. Typically these come on a CD or DVD. The disc may already have a program that will allow you to view the scan. If it doesn't, you'll have to download a program capable of reading DICOM files, such as 3D Slicer. Open your scan according to the instructions of your specific program. You may notice that your scan is composed of several sets of images, called series. Each series contains a stack of images. For CT scans these are usually images in different planes (axial, coronal, and sagittal) or before and after administration of IV contrast. For MRI each series is usually a different pulse sequence, which may also be before or after IV contrast. Step 3: Does the medical imaging software program tell you what kind of scan you have? Most imaging software programs will tell you what kind of scan you have under a field called "modality." The picture below shows a screen capture from 3D Slicer. Looking at the Modality column makes it pretty obvious that this is a CT scan. Figure 3: A screen capture from the 3D Slicer program shows the kind of scan under the modality column. Step 4: Can you see the CAT scan or MRI table the patient is laying on? If you can see the table that the patient is laying on or a brace that their head or other body part is secured in, you probably have a CT scan. MRI tables and braces are designed of materials that don't give off a signal in the MRI machine, so they are invisible. CT scan tables absorb some of the x-ray photons used to make the picture, so they are visible on the scan. Figure 4: A CT scan (left) and MRI (right) that show the patient table visible on the CT but not the MRI. Step 5: Is fat or water white? MRI usually shows fat and water as white. In MRI scans the fat underneath the skin or reservoirs of water in the body can be either white or dark in appearance, depending on the pulse sequence. For CT however, fat and water are almost never white. Look for fat just underneath the skin in almost any part of the body. Structures that contained mostly water include the cerebrospinal fluid around the spinal cord in the spinal canal and around the brain, the vitreous humor inside the eyeballs, bile within the gallbladder and biliary tree of the liver, urine within the bladder and collecting systems of the kidneys, and in some abnormal states such as pleural fluid in the thorax and ascites in the abdomen. It should be noted that water-containing structures can be made to look white on CT scans by intentional mixing of contrast in the structures in highly specialized scans, such as in a CT urogram or CT myelogram. But in general if either fat or fluid in the body looks white, you are dealing with an MRI. Step 6: Is the bone black? CT never shows bones as black. If you can see bony structures on your scan and they are black or dark gray in coloration, you are dealing with an MRI. On CT scans the bone is always white because the calcium blocks (attenuates) the x-ray photons. The calcium does not emit a signal in MRI scans, and thus appears dark. Bone marrow can be made to also appear dark on certain MRI pulse sequences, such as STIR sequences. If your scan shows dark bones and bone marrow, you are dealing with an MRI. A question I am often asked is "If bones are white on CT scans, if I see white bones can I assume it is a CT?" Unfortunately not. The calcium in bones does not emit signal on MRI and thus appears black. However, many bones also contain bone marrow which has a great deal of fat. Certain MRI sequences like T1 and T2 depict fat as bright white, and thus bone marrow-containing bone will look white on the scans. An expert can look carefully at the bone and discriminate between the calcium containing cortical bone and fat containing medullary bone, but this is beyond what a layperson will notice without specialized training. Self Test: Examples of CT and MRI Scans Here are some examples for you to test your newfound knowledge. Example 1 Figure 5A: A mystery scan of the brain Look at the scan above. Can you see the table that the patient is laying on? No, so this is probably an MRI. Let's not be hasty in our judgment and find further evidence to confirm our suspicion. Is the cerebrospinal fluid surrounding the brain and in the ventricles of the brain white? No, on this scan the CSF appears black. Both CT scans and MRIs can have dark appearing CSF, so this doesn't help us. Is the skin and thin layer of subcutaneous fat on the scalp white? Yes it is. That means this is an MRI. Well, if this is an MRI than the bones of the skull, the calvarium, should be dark, right? Yes, and indeed the calvarium is as shown in Figure 5B. You can see the black egg shaped oval around the brain, which is the calcium containing skull. The only portion of the skull that is white is in the frontal area where fat containing bone marrow is present between two thin layers of calcium containing bony cortex. This is an MRI. Figure 5B: The mystery scan is a T1 spoiled gradient echo MRI image of the brain. Incidentally this person has a brain tumor involving the left frontal lobe. Example 2 Figure 6A: Another mystery scan of the brain Look at the scan above. Let's go through our process to determine if this is a CT or MRI. First of all, can you see the table the patient is lying on or brace? Yes you can, there is a U-shaped brace keeping the head in position for the scan. We can conclude that this is a CT scan. Let's investigate further to confirm our conclusion. Is fat or water white? If either is white, then this is an MRI. In this scan we can see both fat underneath the skin of the cheeks which appears dark gray to black. Additionally, the material in the eyeball is a dark gray, immediately behind the relatively white appearing lenses of the eye. Finally, the cerebrospinal fluid surrounding the brainstem appears gray. This is not clearly an MRI, which further confirms our suspicion that it is a CT. If indeed this is a CT, then the bones of the skull should be white, and indeed they are. You can see the bright white shaped skull surrounding the brain. You can even see part of the cheekbones, the zygomatic arch, extending forward just outside the eyes. This is a CT scan. Figure 6B: The mystery scan is a CT brain without IV contrast. Example 3 Figure 7A: A mystery scan of the abdomen In this example we see an image through the upper abdomen depicting multiple intra-abdominal organs. Let's use our methodology to try and figure out what kind of scan this is. First of all, can you see the table that the patient is laying on? Yes you can. That means we are dealing with the CT. Let's go ahead and look for some additional evidence to confirm our suspicion. Do the bones appear white? Yes they do. You can see the white colored thoracic vertebrae in the center of the image, and multiple ribs are present, also white. If this is indeed a CT scan than any water-containing structures should not be white, and indeed they are not. In this image there are three water-containing structures. The spinal canal contains cerebrospinal fluid (CSF). The pickle shaped gallbladder can be seen just underneath the liver. Also, this patient has a large (and benign) left kidney cyst. All of these structures appear a dark gray. Also, the fat underneath the skin is a dark gray color. This is not in MRI. It is a CT. Figure 7B: The mystery scan is a CT of the abdomen with IV contrast Example 4 Figure 8A: A mystery scan of the left thigh Identifying this scan is challenging. Let's first look for the presence of the table. We don't see one but the image may have been trimmed to exclude it, or the image area may just not be big enough to see the table. We can't be sure a table is in present but just outside the image. Is the fat under the skin or any fluid-filled structures white? If so, this would indicate it is an MRI. The large white colored structure in the middle of the picture is a tumor. The fat underneath the skin is not white, it is dark gray in color. Also, the picture is through the mid thigh and there are no normal water containing structures in this area, so we can't use this to help us. Well, if this is a CT scan than the bone should be white. Is it? The answer is no. We can see a dark donut-shaped structure just to the right of the large white tumor. This is the femur bone, the major bone of the thigh and it is black. This cannot be a CT. It must be an MRI. This example is tricky because a fat suppression pulse sequence was used to turn the normally white colored fat a dark gray. Additionally no normal water containing structures are present on this image. The large tumor in the mid thigh is lighting up like a lightbulb and can be confusing and distracting. But, the presence of black colored bone is a dead giveaway. Figure 8B: The mystery scan is a contrast-enhanced T2 fat-suppressed MRI Conclusion: Now You Can Determine is a Scan is CT or MRI This tutorial outlines a simple process that anybody can use to identify whether a scan is a CT or MRI. The democratiz3D service on this website can be used to convert any CT scan into a 3D printable bone model. Soon, a feature will be added that will allow you to convert a brain MRI into a 3D printable model. Additional features will be forthcoming. The service is free and easy to use, but you do need to tell it what kind of scan your uploading. Hopefully this tutorial will help you identify your scan. If you'd like to learn more about the democratiz3D service click here. Thank you very much and I hope you found this tutorial to be helpful. Nothing in this article should be considered medical advice. If you have a medical question, ask your doctor.
  9. 2 points
    SJSato

    Lumbar Spine 3D print

    Had some time over Memorial Day weekend so I downloaded Dr. Mike's Lumbar Spine model. Believe it or not, this was a 65 hour print on my Ultimaker 2! All in all, the print came out pretty well. I have a web cam watching over the printer and can monitor progress over my iPhone. I can also shut down the printer remotely if the printer goes haywire.
  10. 2 points
    Nice model of brain. It definitely needs supports. The printing on Prusa i3 MK3 consumed almost whole 1kg of filament and 90hrs of time (PLA filament 1.75mm, OPTIMAL print 0.15mm, with supports). Unfortunately I chose supports above the pad only, not everywhere, so there are some ugly places above the temporal lobes. It is a pity that the cerebellum is missing. Thanks!
  11. 2 points
    The last three weeks was a busy time for me. I purchased the best 3D printer of Fall 2018 - Prusa I3 MK3. I ordered it as a kit, the build itself took me 8 hours - my obsession with the electronics payed off - and immediately after that the printer was ready for some action. Prusa I3 is the most common 3D printer in the world - 70% of all printers are Prusa clones. Prusa MK3 is manufactured by the designer of the printer itself, Josef Prusa and most of it's parts are made by other MK3's in the Prusa's 3D printer farm. The printer is robust, tough, with very useful automatic functions and can print with most types of termopolymers (Polycarbonate included) with minimum layer thickness of 0,05 mm. Now I'm preparing an enclosure with automatic temperature and humidity control, Hepa and carbon filter and Octoprint upgrade for WiFi control. I bought cheap secon-hand server rack for this purpose (Fig. 4) - if it can keep a constant environment for the servers, it can do it for my printer, right? y first print was the object on Fig. 1 (what is the name of the organ?) Then I had more than 300 hours of unstoppable 3D printing and the printer doesn't made A SINGLE bad print. The only issue was the printing surface after print #12 - the next print didn't adhesed properly, so I had to wipe the printing surface with isopropyl alcohol. I was printing with PLA, now I'm starting with the first roll of PETG. My next step was to contact my colleagues from the orthopedic surgery clinic and to show them my first prints. They was exited by the result, so they provided a 1 mm. slide thickness CT scan of a Pylon fracture. Then I used the following workflow: 1. Slicer 3D, Resample Scalar Vollume to resample the set to 0,5 mm. 2. CurvatureAnisotropicDiffusion with 3 iterations. 3. Editor module for segmentation, model maker for the conversion to stl. 4. Autodesk Meshmixer for remeshing, editing and sculpting, Blender for smoothing. I prefer Meshmixer than Zbrush because it's much simpler and user-friendly. I'm also pretty good with it 5. I sliced the final stl with Slic3r, Prusa Edition and sliced the model on 0,150 mm slices, with support from the building plate, with 15% Gyroid infill (it looks exactly as a spongy bone), with Natural White PLA (17 euro per kilogram, from a local supplier) with the Natural PLA preset on the slic3r. 6. The print took 14 hours, the support was easy for removal (Fig. 2). 7. The orthopedical surgeons did their magic, first on the model (Fig. 3), then on the patient. They claimed, that the operation was very successful, thanks to my model and their skill. The chief surgeon is Dr. Preslav Penev MD PHD. My second project was a Pilon fracture of the ankle with multiple fragments, which I made with the same workflow. The patient is in operation right now. I also have two more projects, for a congenital aplasia of the talus with pes varus and for luxatio of the Lisfranc joint, so I hired two medical students and I'll teach them how to model (I already sent them Dr. Mike's beginners tutorial) for my future projects. I'm the first physician in Bulgaria, who performs preoperative 3D printing, which is very good for my career development. My colleagues called me a "pioneer" and I'm thinking about a 3D printing lab. I already ordered the Multimaterial Upgrade, which means SOLUBLE SUPPORT MATERIAL (I have to wait till January, it's in production right now). Jo Prusa's STL printer looks quite appealing too. Those printers are ridiculously cheap, considering how efficient never-stopping beasts of burden they are. I guest I should hit the vascular surgeons next...
  12. 2 points
  13. 2 points
    Dr. Mike

    Human Heart

    Version 2

    656 downloads

    STL file of 3D printable human heart, full-size. The model has not yet been optimized for 3D printing, so there may be issues with minimum wall thickness, etc. If you print this file, please report back about how the printing went.

    Free

  14. 2 points
    I was also interested into making craniofacial implants, and also i have found MeVisLab free software, but i found it very complex to work with. Than also i tried with Geomagic Sculpt and Freeform, but as Saumyam mentioned they are pretty expencive (retailer in my country said that the price is aroud 2000€ for Sculpt, and 6000 € for Freeform, and 8000 € for Freeform Plus). It was very hard to work with Geomagic sculpt (laggs, unresponsice control etc.), but Freeform was discovery and I am very pleased with that software. Here is model of custom made cranial implant that I made using Geomagic Freeform trial version and Blender. Few details remain to be done on it.
  15. 2 points
    mikefazz

    Materials for fracture experiments

    Hi Terrie, I am familiar with sawbones are you looking for a material with similar mechanical properties to actual bone? These days there are plenty of materials available yet I have doubts about being able to match the visco-elastic properties. I have played around with altering the internal printing structure of a bone by printing the cortical bone solid and using 'infill' to alter density to simulate trabecular bone. The picture below is from a while back where I printed a bone using 2 materials. The red inside is just the infill material which is similar to a honeycomb structure. Bone as a material is pretty strong so may not be easy to replicate as it is more like a composite. I would be interested in looking into options
  16. 2 points
    Cool article about using Finite Element Analysis to predict bone fractures (I love FEA ). https://www.asme.org/engineering-topics/articles/finite-element-analysis/bone-breaking-predictions-put-to-test-with-fea It's very accurate, so to that end, it might not be necessary to create 3d models if the actual bone can be scanned, digitally modelled and then virtually stressed. What types of fracture studies are you planning (if you can share ;-) ) ? Are you looking from a predictive standpoint or from a pure analysis standpoint; perhaps trying to figure out how to prevent certain fractures based upon certain loadings? I think it would be fascinating to print bone with integrated sensors to understand specific deformations at multiple points. It would not necessarily be essential to fail the bone, just understand how forces are transmitted. Printing with multiple materials would be cool in the future to create the ultimate composite bone model. I can see potential problems with micro-anomalies in the bone, or in any of the constraints. The result would false negative/positive failures. One could also do a hybrid approach. Do FEA and at certain points in the analysis, export the deformed file with colors and print it out. You can take the bone apart and see how it's bending/twisting/etc. and what's happening inside it. Just some thoughts Good luck!
  17. 2 points
    Purpose of this blog: To create a forum where members of the 3D medical printing community can share problems, solutions and practical advice pertaining to all aspects of the 3D printing pipeline. Featured problem: Setting up a new printer Featured printer: Printrbot Metal Plus Printing type: Fused deposition modeling Theme: Don’t put the cart in front of the horse Translation: don’t try to print before you’ve set up the printer If you are at all like me, you are impatient. When your new printer arrives, you want to rip open the packaging, set the printer on the counter, plug it in and hit “print”. If this sounds like you, keep reading. This first blog is a cautionary tale. Lesson 1: Make sure that your printer is properly calibrated. 1. Level, Level, Level While the printer may come “pre-calibrated,” it is always a safe bet to double-check that nothing untoward has happened during shipment. The printing bed needs to be level in relation to the path of the extruder, and therefore both the bed and the extruder railing should be checked and adjusted if not leveled. The more level you can get the print bed with respect to the extruder, the easier your life will be for all of the following steps. There are many reports of warped print beds on the internet; e.g. some of the printrbot simple models seem to have a dip in the center of the print bed. Using a straight edge rather than just a level may help you detect this type of issue. Getting that print bed straight by whatever means necessary is advised. 2. Determine your negative z-value, or get ready to throw out a lot of failed prints You need to determine the optimal distance that the hot end of the extruder should be from the print bed when printing. The number you are determining is the negative z value. Picking your negative z-value is sort of like Goldilocks and the 3 bears: If the negative Z value is too high, your print will look stringy. If the negative Z value is too low, your print will look smashed. So you want it Just Right. To set the negative z value, you need to modify the G-code. G-code? At this moment, let me digress for those not familiar with G-code. G-code is the language that the printing software uses to communicate with the printer. G-code is, in essence, directions given to the printer on how to drive the motors and turn the heaters on and off. This is akin to postscript for laser printers. Different slicing programs will create different g-code; some will do it better than others, depending on how optimized they are for a given printer, etc. This is also why some slicing programs may result in a faster print, based on more optimized/efficient g-code. tip: always enter G code in CAPITAL LETTERS For the Printrbot, you enter the G-code that assigns the negative z-value in Repetier. Go to the manual control tab on the right side of the screen, make sure your printer is connected and then type the following in the G-code line: M501 (shows you what the current X, Y and Z offsets are; output on the bottom of screen) M212 Z0 (The number you type after Z is the negative z value that you are assigning. Start with 0 and see where you land, then go negative in small increments e.g. -0.1 to move closer to the print bed, printing a simple object each time and seeing how it turns out. Positive numbers will move the extruder farther from the bed.) M500 (save) 3. Auto-level before every print. Your printing software should instruct the printer to auto-level before any print. In addition to the basic leveling described in 1., there is an “auto leveling” check designed to determine if the print bed is tilted in any direction. Also referred to as “z probing”, this step is necessary because the quality and success of your print depends on any discrepancies in the distance between the hot end of the extruder and the print bed at a given location being accounted for. This can be done by probing 3 locations on the print bed. Don’t believe leveling the bed matters? Well, here are some problems that can arise from a poorly leveled bed: -Initial print layer does not stick or parts are missing -The hot end of the extruder scrapes the bed -The extruder gathers up plastic from the first or second layer So how does auto-leveling work? -An auto-leveling probe (aka z end-stop sensor) defines the distance between the extruder hot end and the print bed at any given location. The auto-leveling probe is to the right of the extruder and has an orange tip in the picture below. The Printrbot Metal Plus has an “inductive sensor” that detects the print bed via conductivity from the aluminum bed. The theoretical beauty of this design is that the sensor tip can be positioned at a level higher than the tip of hot end of the extruder and thus will not drag through your printing surface the way a touch down sensor would. The potential pitfall is that things that change conductivity (i.e. adjacent metallic objects) may affect the sensor. It is possible that your z end-stop sensor is faulty- if you are the unlucky soul that receives a malfunctioning sensor, you may be in for some hurt if your printer tries to jam the extruder into the table. Even if your sensor works, you may misjudge the distance from the extruder to the bed- for these reasons, be very close to an off switch or the plug when you are calibrating your negative z value. If the extruder is being jammed into the table, by all means, turn the printer off! To auto-level before each print, you need to make sure that the printing software contains the autoleveling G-code and adds it to the beginning of any slicing G-code. You need to set up auto-leveling in each slicing/printing program you use. It does not translate between them. The G code you use in Repetier is: G28 X0 Y0 G29 Below are some links to setting up auto-leveling in Repetier and Cura. Setting up auto-leveling in Repetier on Mac: http://help.printrbot.com/Guide/Setting+Up+Your+Auto-Leveling+Probe+and+Your+First+Print+-+Mac/107 Setting up auto-leveling in Repetier on PC: http://www.repetier.com/documentation/repetier-firmware/z-probing/ Setting up auto-leveling with Cura: http://www.instructables.com/id/Use-Printrbots-Autoleveling-Probe-with-Cura/ Beware: Just because your printer auto-levels itself, it doesn’t necessarily mean it won’t plunge through the printer bed in a desperate attempt to follow your every command. In fact, the printrbot metal plus is NOT smart enough to know when to say no. When we accidentally told it to go down 10 mm in the z direction when it was at Z0, it did so, much to our horror (see picture below). In the background of this picture, a hole in the stage marks the scene of an unfortunate z-axis accident. In the foreground, the outline of an aorta that did not make it (foreshadowing for the next blog entry). 4. Just how accurate is your model? You can check to make sure that the printer motors are appropriately calibrated- i.e. they actually travel the correct distance when told to do so. As described above, the printing software communicates with the printer (and thus the motors) using G-code. To make sure nothing is “lost in translation”, you need to make sure that when the software tells the printer head to move, say, 10 mm in the x-direction and 25 mm in the y-direction, the printer head appropriately translates that g-code into the correct movement. There are 4 motors: -X motor -Y motor -Z motor -Extrusion motor To check the calibration of the x, y and z motors, tell the printer to move 40 mm in the x axis and then measure to determine whether it is accurate. If you measure 40 mm, you are done. If not, you need to do some recalibration (see below). Do the same with the y axis and the z axis. Appropriate calibration in the x, y and z axis matters a lot for medical modeling…you want to make sure you are creating accurate models! To check the calibration of the extrusion motor, heat up the extruder to the recommended temperature for the filament. Use tape to mark a few cm up the filament and then measure from the tape to the entrance into the extruder. Tell the printer to extrude 10 mm of filament and measure again. Rate of extrusion really matters: your printing software assumes it knows the accurate amount of material extruded per given time. If too much is extruded, your print will have globs; if too little is extruded, you have holes or poor matrix This is a great primer on motor calibration and how to fix errors: http://www.instructables.com/id/Calibrating-your-3D-printer-using-minimal-filament/ 5. More advanced calibration/ “tweaking” to optimize your prints: A 3D printing manufacturer who goes by “Ville” recently designed and published an STL test file that can be used to troubleshoot calibration issues with any printer. The print has several challenges, including various overhangs, small details, different sized holes and wall-thicknesses, bridging and different surfaces. The idea is that users can share problems and solutions with each other. Read more at: http://3dprint.com/48922/3d-printer-calibrating-test/ Download this STL test file at: https://www.thingiverse.com/thing:704409 The top picture is what the test model should look like. The bottom picture is what my printer produced. Guess I have some tweaking to do.... In the next post, we will tackle one of the most infamous struggles in 3D printing- getting your model to stick to the print bed. Until then, happy printing! -Beth Ripley
  18. 2 points
    Great work Amir!!! This looks fantastic!!! I have been working on similar project with mandibula, more like demonstration model for custom 3d printed grafts in reconstructive maxillofacial surgery.
  19. 2 points
    Dr. Mike this is a great overview. Being that i use patient scans to create 3D prints, i never had this background information provided to me, i had to learn through trial and error.
  20. 2 points
    Fresh off the printer! I use an Ultimaker 2 printer using Colorfab white PLA. The Ultimaker uses Cura software to provide the G code and also will generate the support if needed. I just used the "normal" print settings which gives 100 micron resolution. I reduced the size by 60% and the print time was around 7 hours. I am pretty happy with the print considering this was my first anatomical model. Looking forward to more tutorials!
  21. 1 point
    Yes definitely! I would definitely like to see it applied more to unidentified remains.
  22. 1 point
    Tonia

    Ribs_right

    Version 1.0.0

    0 downloads

    Right side of the chest wall, including half of the spine, and right ribs 1-12, ribs, chest, wall, thorax, spine, chest, ribcage, cage, dorsal, body, 3d, model, printable,

    $9.90

  23. 1 point
    Candace Moore

    Quality of models

    I use 3D slicer at home, but I was in a course where Philips Intellispace was taught. Both have advantages and disadvantages. I'm sure the Intellispace costs differently depending upon how it is negotiated. If you want I can send you my contact there who might know what kind of deal was negotiated for my course. These things are inherently local although the company a big multi-national. I currently live in Israel, and still had to route all my questions through that contact in Spain where the course came from, as Philips here is different. The versions of Intellispace are even slightly different depending on your region. You live in the USA, and they are sort of hyper-capitalists over there. If I were you I might try to negotiate with Europe, and claim your site is intended to be a global resource.
  24. 1 point

    Version 1.0.0

    417 downloads

    Sample brain data from the HCP (Human Connectome Project). Brain segmentation done using FreeSurfer. MeshLab used to smooth the surfaces. Three files are available (a) Full Cortical view, (b) White Matter (no cortex), and (c) left Cortex - right White Matter. Cerebellum and subcortical structures are digitally removed. Superior frontal gyrus, Coronal suture, Precentral sulcus, Precentral gyrus, Parietal bone, Paracentral lobule, Central sulcus, Postcentral gyrus, Superior parietal lobule, Precuneus, Middle frontal gyrus, Precentral sulcus, Postcentral gyrus, Paracentral lobule, Supramarginal gyrus, Inferior parietal lobule, Precuneus, Parieto-occipital sulcus, 3d, model, printing, printable, brain, organ, central nervous system, sylvian,

    Free

  25. 1 point
    Dr. Mike

    Size of the 3D print vs Actual size

    There shouldn't be. Just know that the unit of measurement is in millimeters. If you import the STL file into printer software and specify that the unit of measurement is cm, inches, or feet, your model will be HUGE. Hope this helps. Mike
  26. 1 point
    I contacted the manufacturer of their implants for some details. It's weird, but they are using this brand of filament, which meets the regulations for food safety (European regulations EC No. 1935/2004, EC No. 2023/2006 and EC No. 10/2011 concerning plastic materials and articles coming into contact with food and is also compliant with the FDA (Food and Drug Administration) for food contact), but not those for temporary/permanent implants. So, I contacted Apium for their PEEK filament, which have very good toxicology/cytotoxicity/mutagenic profile and meets all the regulations, including those for temporary/permanent implants. The prices are good, they have good filament dryers (you have to preheat the PEEK to 150 degrees before it reaches the hotend) and they have a specialized 3D printing system for PEEK (which doesn't concern me, because we already have a PEEK capable 3d printer). In the next half a year we'll perform some tests and if the results are ok, we'll make a phalanx bone for a patient, which is on hold right now. If everything is fine, we'll become a manufacturer for such implants. If not, we'll use Nylon 680. My colleagues from Sofia implanted 3d printed rib from Nylon 680 on a patient and the results are very promising.
  27. 1 point
    We 3D printed this model for a customer and the print turned out beautifully. The parts stack nicely and by opening them up, you can clearly see the detailed structures inside the heart chambers. To learn more about our 3D printing service, click here. Here is another print we did in flexible material at 2/3 scale, as requested by the customer. The flexible material has a soft, rubbery feel that is very nice to handle.
  28. 1 point

    Version 1.0.0

    7 downloads

    Lung CT Test 2 - stl file processed This file was created with democratiz3D. Automatically create 3D printable models from CT scans. Learn more. bone, 3d model, .stl, ribs, scapula, clavicle, heart, chest, thorax, mediastinum, great, vessels, aorta, descendent, ascendent, celiac, trunk, sternum, sternocostoclavicular joint, dorsal, lumbar, ventricle, auricle, spinous, process,

    Free

  29. 1 point
    Flaviu

    Flexible and Elastic Material

    If you want to print flexible materials on an fdm printer you should only use direct drive and not Bowden systems (like Ultimaker). So the path between the extruder gear and the hot-end should be as short as possible. Especially if you want to go below shore hardness 85A. Printing speeds should be very VERY low (start at 10 mm/s, maybe you can go faster but start slow). And retraction should be a lot higher (at least 2 times higher). Another thing is that flexibles are sometimes VERY hard to take of the printing bed (maybe try something like blue masking tape).
  30. 1 point
    There is a histological staining technique for bone tissue, which can be used with confocal microscope for detailed dataset of the haversian model, the lacunae, the canaliculae, the perivascular spaces - every detail you can possibly imagine. Then the dataset can be segmented into a 3D model with the same workflow, which is used for the CT datasets. The problem is that this technique is very demanding, expensive and potentially letal because of the chemical, which are used in the process. I made several models of pyramidal neurons from confocal datasets (here is one on sketchfab, I have another on embodi3d with the dendrite spikes on it) and it's not that bad - after some deconvolution you can segment the dataset with the automatic threshold segmentator or even with the grayscale model maker and you'll get a good model. Sadly, my department didn't received the funding for this technique and I don't have such dataset...
  31. 1 point
    Dr. Mike

    Holes in bone models with democratiz3D

    I received this inquiry from a member. I am going to post the response here so that it can help others with the same question: QUESTION: "I am printing out a spine model.... Why are there so many defects in the rendering? I can't print this out on a 3d printer, half of the vertebrae are hollow. I get these from a 3d CT and on a computer monitor, the vertebrae are whole. Just take a look at the thumbnails and you'll know what I'm talking about. I don't have the expertise or time to fill all of the defects. Is there a paid service somewhere that could do this for me? I'm just surprised the STL file wouldn't look like the 3d CT since they use the same dicom imagery?" ANSWER: If you are creating bony models and are finding that the bones have holes or other large defects in them (see above), this is probably an issue with the Threshold value used during the conversion. Threshold is the number of Hounsfield units to use to create the surface of the model. Anything above the threshold value is considered bone and is included. Anything below is not considered bone and is excluded. Normal cortical bone is very dense, greater than 300 Hounsfield units, so the default threshold of 150 is more than enough to catch it. The inside of the bone (medullary, or marrow cavity) is filled with fatty bone marrow and is a much lower Hounsfield value. If the patient has osteoporosis or very thin cortical bones they may not register as bone if the default threshold of 150 is used. You can decrease this to a lower threshold value (maybe 100 or so) and you will be more likely to capture this thin, deossified bone. If you go too low though (60 or so) you will start to capture non-bony structures like muscle. Another thing that may help get the highest quality models is using premium operations such as Very Detailed Bone and Ultra quality level. These operations are time-consuming however. To save on time, you can run your scan through democratiz3D using free operations such as Detailed Bone and medium or high quality until you find the threshold you like. Once you find the threshold value you like, you can run you scan through a final time using the highest quality (and slowest) operation settings, such as Very Detailed Bone and Ultra quality. Hope this helps! Dr. Mike
  32. 1 point
    DJB

    Knee Condyles

    From the album: 3D Metal Printed Parts

    3D Printed Knee Condyles
  33. 1 point
    Dr. Mike

    3d printing baby

    Very cool. Thanks for sharing!
  34. 1 point
    Dr. Mike

    Formlabs new wash and cure station

    Formlabs has a new wash and cure station for Form 2 and Form 1+ SLA printers. It looks like buying both the wash and cure together will run you $1200 at this time, and they are only taking preorders. But, this is an interesting advance to their line of high quality yet low cost SLA printers.
  35. 1 point
    If there is a separation, you can click on Edit, Separate Shells in Meshmixer and it will split the model. Did you try uploading the subvolume .nrrd to democratiz3D?
  36. 1 point

    Version 1.0.0

    38 downloads

    This model is the right lower extremity bone rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The leg includes the area between the knee and the ankle and houses the tibia and fibula. The proximal tibia includes the medial plateau (which is concave) and the lateral plateau (which is convex). The Proximal tibia has a 7-10 degree posterior slope. The tibial tuberosity is located on the anterior proximal tibia, which is where the patellar tendon attaches. On the anteromedial surface of the tibia is Gerdy's tubercle, where the sartorius, gracilis, and semitendinosus attach. The distal tibia creates the superior and medial (plafond and medial malleolus) of the ankle joint. The proximal fibula is the attachment for the posterolateral corner structures of the knee joint. The peroneal nerve wraps around the fibular neck. The distal fibula is the lateral malleolus and a common site for ankle fractures. The ankle is a hinge (or ginglymus) joint made of the distal tibia (tibial plafond, medial and posterior malleoli) superiorly and medially, the distal fibula (lateral malleolus) laterally and the talus inferiorly. Together, these structures form the ankle “mortise”, which refers to the bony arch. Normal range of motion is 20 degrees dorsiflexion and 50 degrees plantarflexion. Stability is provided by the anterior talofibular ligament (ATFL), calcaneofibular ligament (CFL), and posterior talofibular ligament (PTFL) laterally, and the superficial and deep deltoid ligaments medially. The ankle is one of my most common sites of musculoskeletal injury, including ankle fractures and ankle sprains, due to the ability of the joint to invert and evert. The most common ligament involved in the ATFL. The foot is commonly divided into three segments: hindfoot, midfoot, and forefoot. These sections are divided by the transverse tarsal joint (between the talus and calcaneus proximally and navicular and cuboid distally), and the tarsometatarsal joint (between the cuboids and cuneiforms proximally and the metatarsals distally). The first tarsometatarsal joint (medially) is termed the “Lisfranc” joint, and is the site of the Lisfranc injury seen primarily in athletic injuries. This model was created from the file STS_022.

    Free

  37. 1 point
    mikefazz

    Heart Segmentation

    Hi I am assuming you have a scan from a gated MRI or a CT scan. If so I would try region growing as shown in my MRI segmentation tutorial:
  38. 1 point
  39. 1 point
    We are developing a reasonably priced large-scale 3D printer and see enormous potential in this field. These machines will retail about 8k with all the options and have a printing envelope of 30" diameter by 48" tall. Put your name on the interest list at www.deltazilla.com for future news.
  40. 1 point
    I hear Formlabs offers great printers. The printer I use is a RepRap (prusa) and it works great, although I had to calibrate it and try a lot of different configurations first. But I owe a lot to this machine because I learned everything from this process. Please share some images of the models you make with us, if you like. I have worked with 3D Slicer on PC and Mac, but I have a Mac myself so, most of the time I do the segmentation with 3D slicer on my Mac, which is great, and I go straight to Meshmixer for further editing and things like separating the mandible from the cranium. I recently worked with OsiriX which is a cool software, but somehow I like the mesh 3D Slicer produces more. Do not under estimate the power of this wonderful free app. It does the job pretty good with reasonable results. Hi Dr. Mike! Thank you very much
  41. 1 point
    3D Printing in Medicine is run by Frank Rybicki of University of Ottawa, formerly from Brigham in Boston. The editorial board is comprised of many leaders in 3D printing in the field of radiology. It looks like a promising journal, although I think there are only 2 published articles so far. I expect more to come!
  42. 1 point
    Q&A with Mayo Radiologists about 3D print lab as surgical service: http://tcbmag.com/News/Recent-News/2016/April/Q-A-How-Mayo-Is-Integrating-3D-Printing-Into-The-O
  43. 1 point
    Dr. Mike

    Formlabs Form 2 SLA Printer

    I got one. Will post a full review soon. It is AWESOME!
  44. 1 point
    Hi Dr Mike , In principal, is it the same procedure using 3D ultrasound DICOM files? Many thanks upfront Tom
  45. 1 point
    vlad

    Abdominal aortic aneurysm model

    Dr. Mike, this video from Miami Cardiac & Vascular Institute is right up your alley. Also, would you consider posting that AAA file to the File Vault? I would like to print it on our company multijet resin printer to see how it would come out. Will give credit to Embodi3D for the model. Thanks!
  46. 1 point
    Dr. Mike I uploaded an STL file of a skull repair from Dicom data I obtained from the Osirix site. As a design engineer this is a reverse engineering type of application where we are taking raster data imaging and making a model from it. A high resolution scan can lead to data that has a million faces or more which is more than my design software (Solidworks) can handle which is limited to 100,000 faces. I have no problem post processing and scaling the data back by decimating it to reduce the number of faces. The general geometry seems to be OK but I have concerns with measurement errors etc... caused by such a drastic reduction of data (85% for the file I processed). I am really interested in getting into the custom design of implants with precision design tools such as Solidworks or Inventor. The design packages have severe limitations to the number of raster points they can process. If I was modeling a skull or region of interest, to get the highest resolution model, I would have to scale the data back to only the region of interest and remove all areas that are not necessary. I am concerned anytime that I have to Decimate a model with regard to creating geometry errors. Is there a tool or a better way of doing this to create a model or am I generally on the right approach and have to accept the limitations.
  47. 1 point
    ACL injuries are a big concern for high performance athletes — in the NFL alone, there are an average of 53 ACL injuries per year. In some cases, the injury requires surgical treatment and a lot of time off. For more severe injuries, it’s career-ending. But the ultimate consequences of injuries of the anterior cruciate ligaments is probably about to change, with the help of a new 3D printed surgical device that helps surgeons better reconstruct partial or full ACL tears and reduce the chances of re-tearing. The biocompatible surgical device belongs to DanaMed™ Inc. and Pathfinder™ and was created by Stratasys Direct Manufacturing, an additive manufacturing service. Stratasys used Direct Metal Laser Sintering (DMLS) technology to build the tool. The Pathfinder System “Pathfinder illustrates how 3D printing is uniquely capable of enabling breakthroughs in medical technology that otherwise would not be possible,” said John Self, project engineer at Stratasys Direct Manufacturing, in a press release. “And by offering DanaMed 97 percent cost savings over conventional manufacturing methods, 3D printing has demonstrated its business value in bringing complex, high-quality parts to market.” The Pathfinder System was developed by Dr. Dana Piasecki, an orthopedic surgeon at Orthhcarolina Sports Medicine. After experimenting with different surgical strategies that could optimize graft positioning, he developed the Pathfinder ACL Guide and Guide Pins. His research found that using a tool shaped similarly to the knee was the most effective. Dr. Piasecki and DanaMed Inc. worked to perfect the design with Fused Deposition Modeling. Stratasys Direct Manufacturing, using DMLS, was able to manufacture the tool affordably, and made it possible to change the design on the fly. An Ideal Tool The Pathfinder tool is made with Inconel 718 material, which was optimal for mechanical requirements, biocompatability, oil resistance, and other factors. The tool underwent a series of tests before receiving registration from the FDA as a Class 1 Medical Device. While news about the technology is just now breaking in the biomedical 3D printing community, the device is already on the market and can be used in orthopedic surgery. For procedures involving anchoring grafts in the ACL, the Pathfinder has an impressive 95 percent success rate, meaning that it may be the perfect tool to change how successful ACL surgeries become in the long run. The technique also allows the repaired ACL to undergo the same amount of strain as a natural ACL. Other techniques are not only more complicated surgically, but increase the risk for complications and reinjury. The Pathfinder tool is just one example of a metal part manufactured with 3D printing. Many companies have been leveraging the technology, to the point where additive metal usage is expected to almost double in the next 3 years in the US alone. As a result, Stsratasys Direct Manufacturing has made major increases in its additive metals capacity in recent months. You can read more about DanaMed’s 3D printing projects here, and Stratasys Direct Manufacturing’s metal capabilities here. Image Credits: Business Wire
  48. 1 point
    Dr. Mike

    3D Printed Bones for Anthropology

    Terrie, Thanks so much for this insightful post! 3D printing has incredible potential in anthropology and we need more discussion on applications in anthropology in this community. My first encounter with 3D printing in medicine was actually more related to anthropology. At the Joint POW/MIA Acocunting Command (JPAC) in Hawaii, they repatriate remains of fallen service members from overseas conflicts. Repatriated remains need to be studied, but they also need to be buried quickly with full military honors. JPACs solution was to CT scan and 3D print the bones for study and quickly bury the originals to provide closure for families and loved ones. It was an incredible solution, providing a valuable resource for future scientific study while maintaining the highest level of compassion and honor for the fallen service members and their families. I'd definitely love to hear more about what you and others are doing in the anthropology field. If anybody reading this forum would like to share 3D printable anthropology files, there is a dedicated anthropology section in the File Vault, which is unfortunately sparsely populated as of this writing. Hopefully that will change in the future!
  49. 1 point
    The world has seen a lot of innovations with 3D printing technology. Recently, bioengineers from the Swansea University in Wales developed a way to create 3D printed organs using representative biological structures. The biodegradable tissue scaffold dubbed as Celleron comes with a liquid biopolymer and a filament derivative. Led by Dr. Dan Thomas, the engineers from the Swansea University was able to create this material and replicate the underlying structures of complex tissues. Celleron contains phospholipids, grapheme, ibuprofen, collagen, agarose, antibiotics and PLGA. Once printed, the scaffold provides independent cell adhesion, differentiation as well as cell to cell communication. After being printed, Celleron ferments when an activator is added. This will cause the material to become microporous which increases the surface area as well as the mechanical strength of the material. Moreover, the protein growth factors turn into a biologically attractive composite. Currently, the researchers were able to create a human ear using Celleron. Dr. Thomas explains that the ear is a technically challenging organ to replicate because of its complex structures and folds. While the researchers were successful in creating the 3D bioprinted ear, they are looking for other ways to use this technology. Recently, they are looking for ways to engineer tooth implants as well as heart valve tissue structures using Celleron. Dr. Thomas and his team are planning to share this technology for biopolymer creation. Hopefully, many researchers will be able to create compatible biomaterials to create new age 3D bioprinted organs and body parts in the future.
  50. 1 point
    Science and technology still finds it difficult to mimic biological structures and systems. Biological structures and systems have the ability to adapt to their environment through reacting to different stimuli like humidity or the amount of sunlight. For instance, plant structures interact with the seasons based on the atmospheric input which leads them to change their structures in order to adapt to their current environment. Although difficult to mimic, researchers from the University of Stuttgart led by Professor Achim Menges are currently studying on morphogenetic design computation and biomimetic engineering in creating bio-inspired materials using 3D printers in order to improve conventional engineering and architectural design. The work of Professor Menges has led him to collaborate with other experts to create hygroscopic components of 3D printed material systems that can trigger changes in the shape of materials in response to the varied atmospheric inputs like relative humidity and temperature within the environment. Calling their work as Biomimetic Responsive Surface Structures, these bio-inspired structures are revolutionary in such a way that it can transfer biological principles into solid architectural systems. This will allow them to create an entirely new and smart architectural plans–building and structures–that are climate responsive. The challenge in this research is that while conventional engineering uses sets of functional components such as controllers and sensor, the bio-inspired architectural systems rely on differentiated and structured materials that act in single harmony without the use of functional components. Thus the new design can morph or change its shape without human manipulation.
This leaderboard is set to Los Angeles/GMT-08:00
×
×
  • Create New...