Jump to content

Leaderboard


Popular Content

Showing content with the highest reputation since 11/11/2018 in all areas

  1. 2 points
    After several weeks of multi color/material printing with my FDM printer Prusa MK3 (I have other Printers too) with the Multi Material Unit 2 (MMU2) I'd like to share my results with you. Another interesting product regarding multimaterial is the Mosaic Palette 2. I don't own that unit at the moment but I know people who are using the system and I talked a lot with them about the unit so I will share their experience also with you. First of all, some general info. The Prusa MK3 costs as a build kit 769€ and fully assembled 999€. The MMU2 unit comes only as a kit and costs 300€. It can print with up to 5 materials. It can only be used with a Prusa printer out of the box. (Firmware is open source so in theory you could tinker it to work with other printers). Prusa has also their own (open source) slicer called Slic3er PE. The Palette 2 comes in two versions, the standard and the pro. Both versions can print with up to 4 materials. I highly recommend the pro version because it has a better warranty and comes with better quality parts. I also recommend the canvas hub option because it makes it easier to connect the system to your printer. That would result in a total prise of 878 USD. The Palette 3 can only be used with 3D printers that use 1.75 mm filament. So it can't be used with something like an Ultimaker. One more thing about filament. Prusa has now their own filament called Prusament. It is produced with a tolerance of +/- 0.02 mm in diameter. And you get a QR code with your spool to check the measuring yourself. Every spool is measured 100%. One (and only) advantage of the 2.85 mm filament that Ultimaker is using is that it is easier to produce precisely. If you are using 1.75 mm with +/- 0.02 mm that advantage is gone. First some thoughts on the MMU2. The MK3 produces very nice quality prints especially with high quality PLA like Prusament or PLA/PHA. That is mainly thanks to the Bondtech direct drive extruder. One other nice feature is the removable (magnetic flex steel) PEI bed. I guarantee you that if you are using this feature one time you will never never ever want a printer without it again. The basic principle of the system is that it adds a bowden system with a selector to the direct drive system. So the direct drive system pulls the filament up until the bowden system takes over. Than it switches the filament and the bowden system pushes the filament back to the direct drive gears. And so on ... As already mentioned it comes as a kit. And that is a BIG problem. Assembling it is not easy because you have to make sure that the filament path is as smoothly as possible. When you pull filament out from the hotend you can have tips with large strings or increased diameters. That will cause problems. To form the tips Slic3r PE has something called "ramming sequence". It tries to "form" the tips nicely like with no strings. This works good with Prusas own filament Prusament. It works also usually quite good with other filaments especially high quality ones like PLA/PHA. But there is no guarantee it works with the filament you are using so you might have to try different settings. So you have with the MMU2 basically two main problems. Assembling it so that everything runs perfectly smooth. And getting the ramming sequence settings right. A LOT of people are having problems with that. I had also try a lot out and it was frustrating at the beginning. I have now a working unit and prints are imho amazing. Now some words about the Palette 2 (pro). The principle of the machine is that it cuts the filaments and than splices them (melting) together. So you have one filament going out of the system with the right color combination for your model. It comes basically fully assembled. Installing the system to your printer takes maybe half an hour or so depending on your setup. So a LOT easier that the MMU2. One big problem right now is that their own slicer is very buggy and produces (especially on complex models) mediocre print quality. Sometimes it does even the color changes on the wrong location of the part. Combining your own more sophisticated slicer like Slic3er, Simplify3D or Cura with their system works also not reliably at the moment. Some general thoughts. Both systems produce purge towers. Every time when you change the color you have to get rid of the plastic from the old color in the hot end. How much you have to purge onto the tower is color dependent. E. g. switching from black to white or from PLA to BVOH as extreme scenarios. BUT as I mentioned the Palette splices the filaments together. That produces a color gradient in the filament of a few mm. That has to be purged additionally. So the purge amount of the Palette will always be bigger than the one of the MMU2. Slic3er PE has the option to "purge into infill" so it purges also into the objects infill. That option will come to the Palette 2 in the near future. I print a lot with BVOH and I know that it can work with the Palette too. But in both cases it adds complexity. Slic3er PE has the option for printing only support interface layers or completely supports with soluble material. I will start testing flexible materials in the near future. Customer support is pretty good with both companies. The forums are used very actively and you have also a very helpful chat support at Prusa. MMU2 Print: MMU2 Print: Kidney with tumor and magnet inserts MMU2 Fun prints: Palette slicing problems: Palette color gradient:
  2. 2 points
    3D modeling and printing from US data is pretty much the same as from CT... using treshold technique and generating mesh. The biggest problem, for now, is how to open DICOM data obtained from US because it differs to one obtained from CT in one of the software for sliceing (3D Slicer). For now, in 3D slicer you can open DICOM data from GE machines and Philips but people are working on enabling importing DICOM data from other manufacturers. Hope this helps a little bit
  3. 2 points
    I've only printed the skull, but it came out very well (see my comment), I haven't had to clean none of the surfaces of the file. Again, thanks for sharing this file 🙂
  4. 2 points
    I am a neurosurgeon. The simplest way to solve most of our problems in a low cost and rather according to the rules way is to first to print the patients skull (easy). Than to form manually, slowly and exactly a lacking bone from the cheap, available everywhere in the world dental molds (I have succeeded with silicone prosthetic mold). When the bone substitute is ready and firm, then make an impress in a stomatologic acrylic mass (methacrylate, the ubiquitous surgical material), also available everywhere. Its the same component that we use to form a bone in the operating theatre, but not sterile. If you have the mold ready, you can sterilise it in a plasma autoclave, put in a sterile foil bag in the operating theatre and then form in this foil and form a lacking skull piece from a classic methacrylate. Sterile, with all of the certificates needed. It does work. Ready 3D printed skull flaps are often imperfect. I.e. they do not take into consideration brain swelling, soft tissue remodelling etc. The mold and forming the bone flap during surgery from PMMA seems to be much more versatile. And you do not have to throw away the bone substitute of 2000 USD into trash. Best regards, Piotr
  5. 2 points
    Nice model of brain. It definitely needs supports. The printing on Prusa i3 MK3 consumed almost whole 1kg of filament and 90hrs of time (PLA filament 1.75mm, OPTIMAL print 0.15mm, with supports). Unfortunately I chose supports above the pad only, not everywhere, so there are some ugly places above the temporal lobes. It is a pity that the cerebellum is missing. Thanks!
  6. 2 points
    The last three weeks was a busy time for me. I purchased the best 3D printer of Fall 2018 - Prusa I3 MK3. I ordered it as a kit, the build itself took me 8 hours - my obsession with the electronics payed off - and immediately after that the printer was ready for some action. Prusa I3 is the most common 3D printer in the world - 70% of all printers are Prusa clones. Prusa MK3 is manufactured by the designer of the printer itself, Josef Prusa and most of it's parts are made by other MK3's in the Prusa's 3D printer farm. The printer is robust, tough, with very useful automatic functions and can print with most types of termopolymers (Polycarbonate included) with minimum layer thickness of 0,05 mm. Now I'm preparing an enclosure with automatic temperature and humidity control, Hepa and carbon filter and Octoprint upgrade for WiFi control. I bought cheap secon-hand server rack for this purpose (Fig. 4) - if it can keep a constant environment for the servers, it can do it for my printer, right? y first print was the object on Fig. 1 (what is the name of the organ?) Then I had more than 300 hours of unstoppable 3D printing and the printer doesn't made A SINGLE bad print. The only issue was the printing surface after print #12 - the next print didn't adhesed properly, so I had to wipe the printing surface with isopropyl alcohol. I was printing with PLA, now I'm starting with the first roll of PETG. My next step was to contact my colleagues from the orthopedic surgery clinic and to show them my first prints. They was exited by the result, so they provided a 1 mm. slide thickness CT scan of a Pylon fracture. Then I used the following workflow: 1. Slicer 3D, Resample Scalar Vollume to resample the set to 0,5 mm. 2. CurvatureAnisotropicDiffusion with 3 iterations. 3. Editor module for segmentation, model maker for the conversion to stl. 4. Autodesk Meshmixer for remeshing, editing and sculpting, Blender for smoothing. I prefer Meshmixer than Zbrush because it's much simpler and user-friendly. I'm also pretty good with it 5. I sliced the final stl with Slic3r, Prusa Edition and sliced the model on 0,150 mm slices, with support from the building plate, with 15% Gyroid infill (it looks exactly as a spongy bone), with Natural White PLA (17 euro per kilogram, from a local supplier) with the Natural PLA preset on the slic3r. 6. The print took 14 hours, the support was easy for removal (Fig. 2). 7. The orthopedical surgeons did their magic, first on the model (Fig. 3), then on the patient. They claimed, that the operation was very successful, thanks to my model and their skill. The chief surgeon is Dr. Preslav Penev MD PHD. My second project was a Pilon fracture of the ankle with multiple fragments, which I made with the same workflow. The patient is in operation right now. I also have two more projects, for a congenital aplasia of the talus with pes varus and for luxatio of the Lisfranc joint, so I hired two medical students and I'll teach them how to model (I already sent them Dr. Mike's beginners tutorial) for my future projects. I'm the first physician in Bulgaria, who performs preoperative 3D printing, which is very good for my career development. My colleagues called me a "pioneer" and I'm thinking about a 3D printing lab. I already ordered the Multimaterial Upgrade, which means SOLUBLE SUPPORT MATERIAL (I have to wait till January, it's in production right now). Jo Prusa's STL printer looks quite appealing too. Those printers are ridiculously cheap, considering how efficient never-stopping beasts of burden they are. I guest I should hit the vascular surgeons next...
  7. 2 points
    Dr. Mike

    Full size Thorax 3D print

    A quarter is shown at the bottom for scale.
  8. 2 points
    DIBENDUJOY

    vikram

    Version 1.0.0

    153 downloads

    craniotomy, stl, 3d, model, printable, parietal, frontal, temporal, occipital, orbit, nasal, bones, maxilla, craniotomy, neurosurgery, sutures, mastoid, apophysis

    Free

  9. 1 point
    There seems to be lots of interest in this community regarding 3D printing from ultrasound images. Does anybody know of resources available to show how to do it? I'm sure many here would be interested.
  10. 1 point

    From the album: embodi3D 3D Printed Models

    Video showing flow testing performed in an elastic 3D printed sheep heart model
  11. 1 point

    Version 1.0.0

    3 downloads

    This file contains two printable circle of willis models. One is at life size and another magnified. It has been printed using Form 2 SLA printer and the second image is of the large model with support structures under xray which looks like cerebral angiography. Anterior parietal artery, Pericallosal artery, Posterior parietal artery, Artery of the angular gyrus, Posterior temporal artery, Second segment of the middle cerebral artery, Anterior communicating artery of the cerebrum (obscured by a vascular arch), First segment of the middle cerebral artery (sphenoid part), Temporal polar artery, Frontal orbital artery, Internal carotid artery, 3d, model, printable, .stl

    $5.00

  12. 1 point

    From the album: embodi3D 3D Printed Models

    This stackable heart with short-axis slices was 3D printed for a customer with strong red plastic. The print turned out great! The file can be downloaded here. To learn more about embodi3D's specialized medical 3D printing services, click here.
  13. 1 point
    This tutorial is based on course I taught at the 2018 RSNA meeting in Chicago, Illinois. It is shared here free to the public. In this tutorial, we walk though how to convert a CT scan of the face into a 3D printable file, ready to be sent to a 3D printer. The patient had a gunshot wound to the face. We use only free or open-source software and services for this tutorial. There are two parts to this tutorial: Part 1: How to use free desktop software to create your model Part 2: Use embodi3D's free democratiz3D service to automatically create your model Key Takeaway from this Tutorial: You can make high quality 3D printable models from medical imaging scans using FREE software and services, and it is surprisingly EASY. A note on the FDA (for USA people): There is a lot of confusion about whether expensive, FDA-approved software must be used for medically-related 3D printing in the United States. The FDA recently clarified its stance on the issue.* If you are not using these models for patient-care purposes, this does not concern you. If you have questions please see the FDA website. If you are a DOCTOR, you can use whatever software you think is appropriate for your circumstances under your practice of medicine. If you are a COMPANY, selling 3D printed models for diagnostic use, you need FDA-approved software. If you are designing implants or surgical cutting guides, those are medical devices. Seek FDA feedback. *Kiarashi, N. FDA Current Practices and Regulations, FDA/CDRH-RSNA SIG Meeting on 3D Printed Patient- Specific Anatomic Models. Available at https://www.fda.gov/downloads/MedicalDevices/NewsEvents/WorkshopsConferences/UCM575723.pdf Accessed 11/1/2017. Part 1: Using Desktop software 3D Slicer and Meshmixer Step 1: Download the scan file and required software To start, download the starting CT scan file at the link below. Also, install 3D Slicer (slicer.org) and Meshmixer (meshmixer.com). Step 2: Open 3D Slicer Open Slicer. Drag and drop the scan file gunshot to face.nrrd onto the slicer window. The scan should open in a 4 panel view as shown below in Figure 1. Figure 1: The 4 up view. If your view does not look like this, you can set the 4 up view to display by clicking Four-Up from the View menu, as shown in Figure 2 Figure 2: Choosing the four-up view Step 3: Learning to control the interface Slicer has basic interface controls. Try them out and become accustomed to how the interface works. Note how the patient has injuries from gunshot wound to the face. Left mouse button – Window/Level Right mouse button – Zoom Scroll wheel – Scroll through stack Middle mouse button -- Pan Step 4: Blur the image The CT scan was created using a bone reconstruction kernel. Basically this is an image-enhancement algorithm that makes edges more prominent, which makes detection of fractures easier to see by the human eye. While making fracture detection easier, this algorithm does unnaturally alter the image and makes it appear more "speckled" Figure 3: Noisy, "speckled" appearance of the scan on close up view To fix this issue, we will slightly blur the image. Select Gaussian Blur Image Filter as shown below in Figure 4 Figure 4: Choosing the Gaussian Blur Image Filter Set up the Gaussian Blur parameters. Set Sigma = 1.0. Set the input volume to be Gunshot to face. Create a new output volume called "Gaussian volume" as shown in Figure 5. Figure 5: Setting up the Gaussian parameters When ready, click Apply, as shown in Figure 6. You will notice that the scan becomes slightly blurred. Figure 6: Click Apply to start the Gaussian Blur Image filter. Step 5: Create a 3D model using Grayscale Model Maker Open the Grayscale Model Maker Module as shown below in Figure 7. Figure 7: Opening the Grayscale Model Maker Set up the Grayscale Model Maker parameters. Select the Gaussian volume as the input volume, as shown in Figure 8. Figure 8: Choosing the input volume in Grayscale Model Maker Next, set the output geometry to be a new model called "gunshot model." Set the other parameters: Threshold = 200, smooth 15, Decimate 0.5, Split normals unchecked as shown in Figure 9. Figure 9: Grayscale Model maker parameters When done, click Apply. A new model should be created and will be shown in the upper right hand panel, as shown in Figure 10. Figure 10: The new model Step 6: Save the model as an STL file To start saving the model, click the save button in the upper left of the Slicer window as shown in Figure 11. Figure 11: The save button Be sure that only the 3D model, gunshot model.vtk is selected. Uncheck everything else, as shown in Figure 12. Figure 12: The Save dialog. Check the vtk file Make sure the format of the 3D model is STL as shown in Figure 13. Specify the folder to save into, as shown in Figure 14. Figure 13: Specify the file type Figure 14: Specify the folder to save into within the Save dialog. Step 7: Open the file in Meshmixer for cleanup Open Meshmixer. Drag and drop the newly created STL file on the meshmixer window. The file will open and the model will be displayed as in Figure 15. Figure 15: open the STL file in Meshmixer Get accustomed to the Meshmixer interface as shown in Figure 16. A 3 button mouse is very helpful. Figure 16: Controlling the Meshmixer user interface Choose the Select tool. In is the arrow button along the left of the window. Figure 17: The select tool Click on a portion of the model. The selected portion will turn orange, as shown in Figure 18. Figure 18: Selected areas turn orange. Expand the small selected area to all mesh connected to it. Use Select->Modify->Expand to Connected, or hit the E key. The entire model should turn orange. See Figure 19. Figure 19: Expanding the selection to all connected mesh. Next, Invert the selection so that only disconneced, unwanted mesh is selected. Do this with Select->Modify->Invert, or hit the I key as shown in Figure 20. Figure 20: Inverting the selection At this point, only the unwanted, disconnected mesh should be selected in orange. Delete the unwanted mesh using Select->Edit->Discard, or use the X or DELETE key as shown in Figure 21. At this point, only the desired mesh should remain. Figure 21: Deleting unwanted mesh. Step 8: Run the Inspector tool The Inspector tool will automatically fix most errors in the model mesh. To open it, choose Analysis->Inspector as shown in Figure 22. Figure 22: The Inspector tool The Inspector will identify all of the errors in the mesh. To automatically correct these mesh errors, click Auto Repair All as shown in Figure 23. Figure 23: Auto Repairing using Inspector The Inspector will usually fix all or most errors. In this case however, there is a large hole at the edge of the model where the border of the scan zone was. The Inspector doesn't know how to close it. This is shown in Figure 24. Figure 24: The inspect could not fix 1 mesh error Step 9: Close the remaining hole with manual bridges Using the select tool, select a zone of mesh near the open edge. The Select tool is opened with the arrow button along the left. Choose a brush size -- 40 is good -- as shown in Figure 25. Figure 25: Choosing the select tool The mesh should turn orange when selected, as shown in Figure 26. Figure 26: Selected mesh turns orange. Next, rotate the model and select a zone of mesh opposite the edge from the first selected zone, as shown in Figure 27. Figure 27: Selecting mesh opposite the defect. Once both edges are selected, create a bridge of mesh spanning the two selected areas using the Bridge operation: Select->Edit->Bridge, or CTRL-B, as shown in Figure 28. Figure 28: The bridge tool There should now be a bridge of orange mesh spanning the gap. Click Accept, as shown in Figure 29. Figure 29: The new bridge. Be sure to click Accept. Next, repeat the bridge on the opposite side of the skull. Be sure to deselect the previously selected mesh before working on the opposite side, as shown in Figure 30. Figure 30: Creating a second bridge on the opposite side. Step 10: Rerun the Inspector Rerun the Inspector tool, as shown in Figure 31. Now with the bridges to "help" Meshmixer to know how to fill in the hole, it should succeed. If it fails, create more bridges and try again. Figure 31: Rerun the Inspector tool Next, export your file to STL. ' Figure 32: Export to STL Step 11: 3D print your file! Your STL file is now ready to be sent to the 3D printer of your choice. Figure 33 shows the model after printing. Figure 33: The final print Part 2: Using the democratiz3D service on embodi3d.com democratiz3D automatically converts scans to 3D printable models. It automates the mesh cleanup process and saves time. The service is free for general bone model creation. Step 1: Register Register for a free embodi3D account. The process takes only a minute. You need an account for your processed files to be saved to. Step 2: Upload the NRRD source scan to democratiz3D. From anywhere in the site, click democratiz3D-> Launch App Figure 34: Launching the democratiz3D app. Fill out basic information about your file. That information will be copied to your generated STL file, as shown in Figure 35. Figure 35: Entering basic file information Make sure democratiz3D processing is on. Choose an operation to convert your model. Set threshold to 200, as shown in Figure 36. Figure 36: Operation, threshold, and quality parameters. Click Submit! In 10 to 15 minutes your model should be done. You will receive an email notification. The completed model file will be saved under your account. Download the file and send it to your printer of choice! Figure 37; The final democratiz3D file, ready for download. That's it! I hope this tutorial was helpful to you. If you liked it, please rate it positively. If you want to learn more about democratiz3D, Meshmixer, or Slicer, please see our tutorials page. It has a lot of wonderful resources. Happy 3D printing!
  14. 1 point
    Great!! I did a half print on the Stratasys printer in our lab. A beautiful brain model.
  15. 1 point

    Version 1.0.0

    0 downloads

    WZ anterior mandible - stl file processed Have embodi3D 3D print this model for you. Learn More. This file was created with democratiz3D. Automatically create 3D printable models from CT scans. Learn more. lower, teeth, tooth, dental, dentistry, mandible, angle, body, upper, 3d, model, .stl, bone

    Free

  16. 1 point
    MMMMATT

    Spine full

    Version 1.0.0

    128 downloads

    from cat scan, bone, stl, dicom, 3dmodel, lumbar, spine, vertebrae,

    Free

  17. 1 point
    Agreed. This limit was put in place to prevent abuse for free downloads, but should not apply to paid items. We are working on a fix. You should now be able to download your files. Thank you for letting us know about this issue.
  18. 1 point

    From the album: embodi3D 3D Printed Models

    This skull with left MCA aneurysm was printed by embodi3D for a customer who wants to use the model for simulating neurosurgical aneurysm clipping.
  19. 1 point
    We 3D printed this model for a customer and the print turned out beautifully. The parts stack nicely and by opening them up, you can clearly see the detailed structures inside the heart chambers. To learn more about our 3D printing service, click here. Here is another print we did in flexible material at 2/3 scale, as requested by the customer. The flexible material has a soft, rubbery feel that is very nice to handle.
  20. 1 point
    kopachini

    Skull is seen as two shells

    Dear olatif2 when in blender, choose edge select and then ALT + LMB/RMB (depending your preferences) and it should select whole edge (tabula externa) than try SHIFT+ALT+LMB/RMB and select tabula externa and than when both edges are selected pres F and sgould get a facet (closed gap). Or faster way would be to add a new object (cube), size it up, put it below both edges and boolean operation difference and should get closed edges of the skull but slightly lower model than it would be at first.
  21. 1 point
    We recently 3D printed a multimaterial skull with MCA aneurysm from a CTA head for customer who needed the skull in rigid plastic and the vessels and aneurysm in flexible material. The model will be used by neurosurgeons to practice intracranial aneurysm clipping surgery. To properly simulate the surgery, the skull needs to be hard and the vessels elastic. Combining two materials (and two printers!) provides the best solution. The model was created on democratiz3D. You can learn more about embodi3D's printing service here.
  22. 1 point

    From the album: embodi3D 3D Printed Models

    This skull with left MCA aneurysm was printed by embodi3D for a customer who wants to use the model for simulating neurosurgical aneurysm clipping.
  23. 1 point

    Version 1.0.0

    28 downloads

    Kidney 3D .stl file extracted from slicer 3D sample data

    Free

  24. 1 point

    Version 1.0.0

    24 downloads

    CT HAND - stl file processed hand, wrist, bone, 3dmodel, stl, upper, limb, print

    Free

  25. 1 point

    Version 1.0.0

    38 downloads

    Wynik_STL - stl file processed Have embodi3D 3D print this model for you. Learn More. This file was created with democratiz3D. Automatically create 3D printable models from CT scans. Learn more. 3d, model, .stl, printable, Distal phalanx (tuft), Distal phalanx, Distal interphalangeal joint, Proximal interphalangeal joint, Middle phalanx, Head of the proximal phalanx, Proximal phalanx, Metacarpophalangeal joint, Base of the proximal phalanx, Metacarpal head, Sesamoid, Metacarpal, Metacarpal base, Capitate, Trapezoid, Hamate, Trapezium, Triquetrum, Scaphoid, Pisiform, Radial styloid, Ulnar styloid, Lunate, Distal radius, Distal radioulnar jointDistal ulna, 3d, model, .stl, upper, limb, hand, wrist, upper, limb, bone

    Free

  26. 1 point

    Version 1.0.0

    12 downloads

    Segmented lumbar spine and sacrum, young adult. This includes L1 through L5 vertebral bodies and the sacrum .STL files for the intervertebral disks and pelvis are available as a separate download.

    $6.00

  27. 1 point
    Hi Mike, Is there a Mayo Clinic Collaborative 3D Printing in Medical Practice 2019? I can't seem to find any current information on it?
  28. 1 point
    Great tutorial, very complete and well thought out. Do you prefer 3Dslicer to Horos? Are there advantages or quality differences worth mentioning? Will the Democtatiz3D app offer vasculature as an operation in the future?
  29. 1 point
    los

    Looking for DICOM files

    New Mexico is working on getting a CT database up and running some time in 2019. Below is recent link https://www.forensicmag.com/news/2019/01/ct-scans-database-new-mexico-could-be-game-changer?et_cid=6584525&et_rid=454861088&type=headline&et_cid=6584525&et_rid=454861088&linkid=https%3a%2f%2fwww.forensicmag.com%2fnews%2f2019%2f01%2fct-scans-database-new-mexico-could-be-game-changer%3fet_cid%3d6584525%26et_rid%3d%%subscriberid%%%26type%3dheadline
  30. 1 point

    Version 1.0.0

    29 downloads

    polytrauma pelvis - stl file processed polytrauma right hemipelvis fracture S1-S2 fracture arcade ischio et illio pubienne date trauma : 04/17 date irm : 04/18 This file was created with democratiz3D. Automatically create 3D printable models from CT scans. Learn more. pelvis, hip, ilium,ischium, pubis, obturador, sacrum, lumbar, spine, sacroiliac, joint, fracture, iliac, crest, coccyx, 3d, model, .stl, printable,

    Free

  31. 1 point
    The RSNA/SIG released a paper about guidelines for medical 3d printing. Download link e.g.: Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios On page 7 there is an interesting table with ratings from 1-9 about the usefulness of 3d printing on specific medical scenarios: 1-3: rarely appropriate 4-6: maybe appropriate 7-9: usually appropriate
  32. 1 point
    kopachini

    Converting Ultrasound Files

    I found in the 3D Slicer forum this topic that may help you. There is software called TomoVision that could help you, but you must buy it. https://discourse.slicer.org/t/how-to-import-a-mvl-file-format-3d-ultrasound-image/3294
  33. 1 point

    246 downloads

    Normally there are two main blood vessels leaving the heart: the aorta, carrying blood to the body, and the pulmonary artery that branches immediately to carry blood to each lung. Instead of having a separate pulmonary artery and aorta, each with its own three-leafed valves, a baby with truncus arteriosus has only one great blood vessel or trunk leaving the heart, which then branches into blood vessels that go to the lungs and the body. This great vessel usually has one large valve which may have between two and five leaflets. Usually this great vessel sits over both the left and right ventricle. The upper portion of the wall between these two chambers is missing, resulting in what is known as a ventricular septal defect (VSD). There are 3 separate files as well as a fourth STL file for 3D printing the whole model. The three part model has holes for magnets, which can be used to connect and separate the pieces. All the STL files have been zipped to conserve space. The model is provided for distribution on Embodi3D with the permission of the author, pediatric cardiologist Dr. Matthew Bramlet, MD, and is part of the Congenital Heart Defects library. We thank Dr. Bramlet and all others who are working to help children with congenital heart problems lead normal and happy lives. It is distributed by Dr. Bramlet under the Creative Commons license Attribution-NonCommercial-NoDerivs. Please respect the terms of the licensing agreement. A US quarter is shown for scale in the images below.

    Free

  34. 1 point
    valchanov

    Formlabs Fuse 1 SLS printer

    There is a game changer on the SLA front - Josef Prusa made an open source SLA printer - Prusa SL1. You can buy two of those and one Prusa MK3 with the money for one Form 2. It prints down to 10 microns layer thickness (after some tweaking of the slicer). It is open source, which means that the wave of cheap prusa clones is coming. This will change the whole SLA sector because let's face it - with the money for one Form 2 you can buy a whole 3D printer farm with the best printer of Winter 2018 (Prusa MK3) or you can buy two printers of the same class, with the same parameters, which requires more tinkering and experienced staff. The bad side about the Prusa printers are the limited Wi Fi options...
  35. 1 point

    Version 1.0.0

    6 downloads

    spinosa - stl file processed This file was created with democratiz3D. Automatically create 3D printable models from CT scans. Learn more.

    Free

  36. 1 point

    Version 1.0.0

    43 downloads

    knee and bones - stl file processed This file was created with democratiz3D. Automatically create 3D printable models from CT scans. Learn more. 3d, femur, model, .stl, lower, limb, Femur, Patella, Lateral femoral epicondyle, Medial femoral epicondyle, Lateral femoral condyle, Medial femoral condyle, Lateral tibial condyle, Medial tibial condyle, Medial and lateral tubercles of the intercondylar eminence, Fibular head, Tibia, Fibula,

    Free

  37. 1 point

    Version 1.0.0

    4 downloads

    test - stl file processed This file was created with democratiz3D. Automatically create 3D printable models from CT scans. Learn more. skull, head, osteology, bone, 3d, model, .stl, printable, frontal, parietal, temporal, zygomatic, arch, maxilla, upper, teeth, orbit, veterinary, animal

    Free

  38. 1 point

    Version 1.0.0

    25 downloads

    Cat Skull - stl file processed This file was created with democratiz3D. Automatically create 3D printable models from CT scans. Learn more.3d skull, stl, bone, cat, zygomatic arch, temporal, frontal, parietal, maxilla, mandible, teeth, canine, cervical, spine, orbit, auditory, canal, inner, occipital, 3d, model, printable

    Free

  39. 1 point
    Great blog! Its the easiest way in which someone must have explained the difference between CT scan and MRI scan. Thanks for sharing such a wonderful blog, most of the people would like it. I would also like to know the difference between Ultrasound, MRI, and CT scan.
  40. 1 point
    Here are two volumes obtained by GE Voluson E10 and exported as .stl file. I think that a lot depends on fetal head position and gestation age if you want to have nice fetal face model. Personally, I wasn't present when study was made.
  41. 1 point
    I contacted one private clinic in my city which has 3D US, and they are apparently really good at it. They told me that they are too busy right now so I couldn't obtain new DICOM data, but I will call them again and ask them if I could come. But the doctor who works there told me that they have GE Voluson S10 (newest model) which have build in the possibility to save study as .stl file... same as Philips IntelliSpace portal that was told before. I did a little bit of research and really there it is, but not for S10, yet for E10 model: http://www3.gehealthcare.com/en/products/categories/ultrasound/voluson/voluson_e10#tabs/tab44799EF6884146E1A27A6929FCAB17D5 Keep your fingers crossed so I could have a glance at that machine in a very soon time
  42. 1 point
    Dr. Mike

    Holes in bone models with democratiz3D

    I received this inquiry from a member. I am going to post the response here so that it can help others with the same question: QUESTION: "I am printing out a spine model.... Why are there so many defects in the rendering? I can't print this out on a 3d printer, half of the vertebrae are hollow. I get these from a 3d CT and on a computer monitor, the vertebrae are whole. Just take a look at the thumbnails and you'll know what I'm talking about. I don't have the expertise or time to fill all of the defects. Is there a paid service somewhere that could do this for me? I'm just surprised the STL file wouldn't look like the 3d CT since they use the same dicom imagery?" ANSWER: If you are creating bony models and are finding that the bones have holes or other large defects in them (see above), this is probably an issue with the Threshold value used during the conversion. Threshold is the number of Hounsfield units to use to create the surface of the model. Anything above the threshold value is considered bone and is included. Anything below is not considered bone and is excluded. Normal cortical bone is very dense, greater than 300 Hounsfield units, so the default threshold of 150 is more than enough to catch it. The inside of the bone (medullary, or marrow cavity) is filled with fatty bone marrow and is a much lower Hounsfield value. If the patient has osteoporosis or very thin cortical bones they may not register as bone if the default threshold of 150 is used. You can decrease this to a lower threshold value (maybe 100 or so) and you will be more likely to capture this thin, deossified bone. If you go too low though (60 or so) you will start to capture non-bony structures like muscle. Another thing that may help get the highest quality models is using premium operations such as Very Detailed Bone and Ultra quality level. These operations are time-consuming however. To save on time, you can run your scan through democratiz3D using free operations such as Detailed Bone and medium or high quality until you find the threshold you like. Once you find the threshold value you like, you can run you scan through a final time using the highest quality (and slowest) operation settings, such as Very Detailed Bone and Ultra quality. Hope this helps! Dr. Mike
  43. 1 point

    Version 1.0.0

    62 downloads

    Dog Skull - stl file processed,k9, stl, animal, maxilla, 3dmodel, skull, dog, head, bone

    Free

  44. 1 point
    Gustavo

    CT cat Spine

    Version 1.0.0

    12 downloads

    CT cat Spine, thoracic, lumbar, stl, 3dmodel, print, animal, veterinary

    Free

  45. 1 point
    DJB

    Knee Condyles

    From the album: 3D Metal Printed Parts

    3D Printed Knee Condyles
  46. 1 point

    Version 1.0.0

    29 downloads

    This model is the right lower extremity bone rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The leg includes the area between the knee and the ankle and houses the tibia and fibula. The proximal tibia includes the medial plateau (which is concave) and the lateral plateau (which is convex). The Proximal tibia has a 7-10 degree posterior slope. The tibial tuberosity is located on the anterior proximal tibia, which is where the patellar tendon attaches. On the anteromedial surface of the tibia is Gerdy's tubercle, where the sartorius, gracilis, and semitendinosus attach. The distal tibia creates the superior and medial (plafond and medial malleolus) of the ankle joint. The proximal fibula is the attachment for the posterolateral corner structures of the knee joint. The peroneal nerve wraps around the fibular neck. The distal fibula is the lateral malleolus and a common site for ankle fractures. The ankle is a hinge (or ginglymus) joint made of the distal tibia (tibial plafond, medial and posterior malleoli) superiorly and medially, the distal fibula (lateral malleolus) laterally and the talus inferiorly. Together, these structures form the ankle “mortise”, which refers to the bony arch. Normal range of motion is 20 degrees dorsiflexion and 50 degrees plantarflexion. Stability is provided by the anterior talofibular ligament (ATFL), calcaneofibular ligament (CFL), and posterior talofibular ligament (PTFL) laterally, and the superficial and deep deltoid ligaments medially. The ankle is one of my most common sites of musculoskeletal injury, including ankle fractures and ankle sprains, due to the ability of the joint to invert and evert. The most common ligament involved in the ATFL. The foot is commonly divided into three segments: hindfoot, midfoot, and forefoot. These sections are divided by the transverse tarsal joint (between the talus and calcaneus proximally and navicular and cuboid distally), and the tarsometatarsal joint (between the cuboids and cuneiforms proximally and the metatarsals distally). The first tarsometatarsal joint (medially) is termed the “Lisfranc” joint, and is the site of the Lisfranc injury seen primarily in athletic injuries. This model was created from the file STS_022.

    Free

  47. 1 point
    I was also interested into making craniofacial implants, and also i have found MeVisLab free software, but i found it very complex to work with. Than also i tried with Geomagic Sculpt and Freeform, but as Saumyam mentioned they are pretty expencive (retailer in my country said that the price is aroud 2000€ for Sculpt, and 6000 € for Freeform, and 8000 € for Freeform Plus). It was very hard to work with Geomagic sculpt (laggs, unresponsice control etc.), but Freeform was discovery and I am very pleased with that software. Here is model of custom made cranial implant that I made using Geomagic Freeform trial version and Blender. Few details remain to be done on it.
  48. 1 point
  49. 1 point

    154 downloads

    Alzheimer's disease is the 6th leading cause of death in the United States, according to the Centers for Disease Control and Prevention, responsible for 85,000 deaths annually. These STL files allow you to 3D print a whole brain model with Alzheimers disease and another model of the enlarged brain ventricles associated with the disease. Alzheimer's is a neurodegenerative disease usually seen in the later stages of life. Problems with memory, behavior, performing daily activities and personality changes are common symptoms. It is a progressive disease, where dementia symptoms gradually worsen over a number of years. The destruction and loss of nerve cells associated with this disease are represented in the models. The models are provided for distribution on embodi3D.com with the permission of the creators Dr. Beth Ripley and Dr. Tatiana. These models are part of the Top 10 Killers 3D printable disease library. James Weaver and Ahmed Hosny also contributed to the project. We thank everyone involved for their contributions to embodi3d.com and their advocacy for better health and education through 3D printing. There are two STL files available for download and 3D bioprinting. One STL file for printing the ventricles and the other STL is for printing the whole brain. These files are distributed under the Creative Commons license Attribution-NonCommercial-NoDerivs. Please respect the terms of the licensing agreement. Both files are verified as watertight (manifold) and 3D printable.

    Free

  50. 1 point

    135 downloads

    This 3D printable STL file of the splenic artery shows three aneurysms. This model was created from a CT scan and used in pre-surgical testing. It accompanies the blog article Saving a Spleen with 3D Printing: Pre-Surgical Planning with Medical Models make "Impossible" Surgeries Possible. The file is distributed under the Attribution-NonCommercial-NoDerivs license. If you wish to use this file for commercial purposes, please contact the author.

    Free

This leaderboard is set to Los Angeles/GMT-07:00
×
×
  • Create New...