Jump to content

Leaderboard


Popular Content

Showing content with the highest reputation since 11/11/2018 in all areas

  1. 2 points
    I've only printed the skull, but it came out very well (see my comment), I haven't had to clean none of the surfaces of the file. Again, thanks for sharing this file 🙂
  2. 2 points
    Nice model of brain. It definitely needs supports. The printing on Prusa i3 MK3 consumed almost whole 1kg of filament and 90hrs of time (PLA filament 1.75mm, OPTIMAL print 0.15mm, with supports). Unfortunately I chose supports above the pad only, not everywhere, so there are some ugly places above the temporal lobes. It is a pity that the cerebellum is missing. Thanks!
  3. 1 point

    Version 1.0.0

    379 downloads

    This 3D printable model of a human heart was generated from a contrast enhanced CT scan. This model is an improvement over a prior version (here). It shows the heart with slices cut in the anatomical transverse plane. If you are interested in a heart with short-axis slices, check out my short-axis stackable slice model here. Notches have been added to ensure the slices fit together and do not slide against each other. The model demonstrates the detailed anatomy of the human heart in exquisite detail. Each slice stacks on top of the prior slice to form a complete human heart. Individual slices show the detailed cardiac anatomy of the right and left ventricles, and right and left atria, and outflow tracts. Perfect for educational purposes. It has been validated as printable on an Ultimaker 3 Extended printer. Technical parameters: manifold STL (watertight) vertices: 462576 triangles: 925800 dimensions: 15.1 x 15.2 x 10.5 cm

    $9.99

  4. 1 point

    Version 1.0.0

    26 downloads

    This 3D printable model of a normal human heart was generated from an ECG-gated contrast enhanced coronary CT scan. The slices are cut to illustrate the echocardiographic short-axis view. If you are interested in a 3D printable heart that shows slices in the anatomical transverse plane, click here. Notches have been added to ensure the slices fit together and do not slide against each other. The model demonstrates the detailed anatomy of the human heart in exquisite detail. Each slice stacks on top of the prior slice to form a complete human heart. There is a sturdy and stable base. Individual slices show the detailed cardiac anatomy of the right and left ventricles, and right and left atria, and outflow tracts in echocardiographic short-axis projection. Perfect for educational purposes. Technical parameters: Individual STLs: 4 Mesh integrity: manifold STL (watertight) vertices: appx 550k per object triangles: appx 1.1M per object dimensions: 11.4 x 9.1 x 10.6 cm

    $9.99

  5. 1 point
    MMMMATT

    Spine full

    Version 1.0.0

    115 downloads

    from cat scan, bone, stl, dicom, 3dmodel, lumbar, spine, vertebrae,

    Free

  6. 1 point

    Version 1.0.0

    22 downloads

    CT HAND - stl file processed hand, wrist, bone, 3dmodel, stl, upper, limb, print

    Free

  7. 1 point

    Version 1.0.0

    30 downloads

    Wynik_STL - stl file processed Have embodi3D 3D print this model for you. Learn More. This file was created with democratiz3D. Automatically create 3D printable models from CT scans. Learn more. 3d, model, .stl, printable, Distal phalanx (tuft), Distal phalanx, Distal interphalangeal joint, Proximal interphalangeal joint, Middle phalanx, Head of the proximal phalanx, Proximal phalanx, Metacarpophalangeal joint, Base of the proximal phalanx, Metacarpal head, Sesamoid, Metacarpal, Metacarpal base, Capitate, Trapezoid, Hamate, Trapezium, Triquetrum, Scaphoid, Pisiform, Radial styloid, Ulnar styloid, Lunate, Distal radius, Distal radioulnar jointDistal ulna, 3d, model, .stl, upper, limb, hand, wrist, upper, limb, bone

    Free

  8. 1 point

    Version 1.0.0

    12 downloads

    Segmented lumbar spine and sacrum, young adult. This includes L1 through L5 vertebral bodies and the sacrum .STL files for the intervertebral disks and pelvis are available as a separate download.

    $6.00

  9. 1 point

    Version 1.0.0

    29 downloads

    polytrauma pelvis - stl file processed polytrauma right hemipelvis fracture S1-S2 fracture arcade ischio et illio pubienne date trauma : 04/17 date irm : 04/18 This file was created with democratiz3D. Automatically create 3D printable models from CT scans. Learn more. pelvis, hip, ilium,ischium, pubis, obturador, sacrum, lumbar, spine, sacroiliac, joint, fracture, iliac, crest, coccyx, 3d, model, .stl, printable,

    Free

  10. 1 point

    Version 1.0.0

    8 downloads

    Ankmr - stl file processed This file was created with democratiz3D. Automatically create 3D printable models from CT scans. Learn more. bone, .stl, 3d, model, printable, frontal, temporal, parietal, occipital, craniotomy, skull, head, zygomatic, arch, fracture, maxilla, mandible, angle, ramus, body, mastoid, process, styloid, pterygoid, clinoid, apophysis, sphenoid, orbit, petrous, ridge, facial, nasal,

    Free

  11. 1 point

    Version 1.0.0

    15 downloads

    Salim ali al badi - stl file processed This file was created with democratiz3D. Automatically create 3D printable models from CT scans. Learn more.

    Free

  12. 1 point

    Version

    219 downloads

    Normally there are two main blood vessels leaving the heart: the aorta, carrying blood to the body, and the pulmonary artery that branches immediately to carry blood to each lung. Instead of having a separate pulmonary artery and aorta, each with its own three-leafed valves, a baby with truncus arteriosus has only one great blood vessel or trunk leaving the heart, which then branches into blood vessels that go to the lungs and the body. This great vessel usually has one large valve which may have between two and five leaflets. Usually this great vessel sits over both the left and right ventricle. The upper portion of the wall between these two chambers is missing, resulting in what is known as a ventricular septal defect (VSD). There are 3 separate files as well as a fourth STL file for 3D printing the whole model. The three part model has holes for magnets, which can be used to connect and separate the pieces. All the STL files have been zipped to conserve space. The model is provided for distribution on Embodi3D with the permission of the author, pediatric cardiologist Dr. Matthew Bramlet, MD, and is part of the Congenital Heart Defects library. We thank Dr. Bramlet and all others who are working to help children with congenital heart problems lead normal and happy lives. It is distributed by Dr. Bramlet under the Creative Commons license Attribution-NonCommercial-NoDerivs. Please respect the terms of the licensing agreement. A US quarter is shown for scale in the images below.

    Free

  13. 1 point

    Version 1.0.0

    6 downloads

    spinosa - stl file processed This file was created with democratiz3D. Automatically create 3D printable models from CT scans. Learn more.

    Free

  14. 1 point

    Version 1.0.0

    10 downloads

    cat scan - stl file processed, back, leg, pelvis, stl, 3dmodel, bone, vetrinary, tail, column, lumbar

    Free

  15. 1 point

    Version 1.0.0

    37 downloads

    knee and bones - stl file processed This file was created with democratiz3D. Automatically create 3D printable models from CT scans. Learn more. 3d, femur, model, .stl, lower, limb, Femur, Patella, Lateral femoral epicondyle, Medial femoral epicondyle, Lateral femoral condyle, Medial femoral condyle, Lateral tibial condyle, Medial tibial condyle, Medial and lateral tubercles of the intercondylar eminence, Fibular head, Tibia, Fibula,

    Free

  16. 1 point

    Version 1.0.0

    4 downloads

    test - stl file processed This file was created with democratiz3D. Automatically create 3D printable models from CT scans. Learn more. skull, head, osteology, bone, 3d, model, .stl, printable, frontal, parietal, temporal, zygomatic, arch, maxilla, upper, teeth, orbit, veterinary, animal

    Free

  17. 1 point
    DIBENDUJOY

    vikram

    Version 1.0.0

    127 downloads

    craniotomy, stl, 3d, model, printable, parietal, frontal, temporal, occipital, orbit, nasal, bones, maxilla, craniotomy, neurosurgery, sutures, mastoid, apophysis

    Free

  18. 1 point

    Version 1.0.0

    19 downloads

    Cat Skull - stl file processed This file was created with democratiz3D. Automatically create 3D printable models from CT scans. Learn more.3d skull, stl, bone, cat, zygomatic arch, temporal, frontal, parietal, maxilla, mandible, teeth, canine, cervical, spine, orbit, auditory, canal, inner, occipital, 3d, model, printable

    Free

  19. 1 point
    If you are planning on using the democratiz3D service to automatically convert a medical scan to a 3D printable STL model, or you just happen to be working with medical scans for another reason, it is important to know if you are working with a CT (Computed Tomography or CAT) or MRI (Magnetic Resonance Imaging) scan. In this tutorial I'll show you how to quickly and easily tell the difference between a CT and MRI. I am a board-certified radiologist, and spent years mastering the subtleties of radiology physics for my board examinations and clinical practice. My goal here is not to bore you with unnecessary detail, although I am capable of that, but rather to give you a quick, easy, and practical way to understand the difference between CT and MRI if you are a non-medical person. Interested in Medical 3D Printing? Here are some resources: Free downloads of hundreds of 3D printable medical models. Automatically generate your own 3D printable medical models from CT scans. Have a question? Post a question or comment in the medical imaging forum. A Brief Overview of How CT and MRI Works For both CT (left) and MRI (right) scans you will lie on a moving table and be put into a circular machine that looks like a big doughnut. The table will move your body into the doughnut hole. The scan will then be performed. You may or may not get IV contrast through an IV. The machines look very similar but the scan pictures are totally different! CT and CAT Scans are the Same A CT scan, from Computed Tomography, and a CAT scan from Computed Axial Tomography are the same thing. CT scans are based on x-rays. A CT scanner is basically a rotating x-ray machine that takes sequential x-ray pictures of your body as it spins around. A computer then takes the data from the individual images, combines that with the known angle and position of the image at the time of exposure, and re-creates a three-dimensional representation of the body. Because CT scans are based on x-rays, bones are white and air is black on a CT scan just as it is on an x-ray as shown in Figure 1 below. Modern CT scanners are very fast, and usually the scan is performed in less than five minutes. Figure 1: A standard chest x-ray. Note that bones are white and air is black. Miscle and fat are shades of gray. CT scans are based on x-ray so body structures have the same color as they don on an x-ray. How does MRI Work? MRI uses a totally different mechanism to generate an image. MRI images are made using hydrogen atoms in your body and magnets. Yes, super strong magnets. Hydrogen is present in water, fat, protein, and most of the "soft tissue" structures of the body. The doughnut of an MRI does not house a rotating x-ray machine as it does in a CT scanner. Rather, it houses a superconducting electromagnet, basically a super strong magnet. The hydrogen atoms in your body line up with the magnetic field. Don't worry, this is perfectly safe and you won't feel anything. A radio transmitter, yes just like an FM radio station transmitter, will send some radio waves into your body, which will knock some of the hydrogen atoms out of alignment. As the hydrogen nuclei return back to their baseline position they emit a signal that can be measured and used to generate an image. MRI Pulse Sequences Differ Among Manufacturers The frequency, intensity, and timing of the radio waves used to excite the hydrogen atoms, called a "pulse sequence," can be modified so that only certain hydrogen atoms are excited and emit a signal. For example, when using a Short Tau Inversion Recovery (STIR) pulse sequence hydrogen atoms attached to fat molecules are turned off. When using a Fluid Attenuation Inversion Recovery (FLAIR) pulse sequence, hydrogen atoms attached to water molecules are turned off. Because there are so many variables that can be tweaked there are literally hundreds if not thousands of ways that pulse sequences can be constructed, each generating a slightly different type of image. To further complicate the matter, medical scanner manufacturers develop their own custom flavors of pulse sequences and give them specific brand names. So a balanced gradient echo pulse sequence is called True FISP on a Siemens scanner, FIESTA on a GE scanner, Balanced FFE on Philips, BASG on Hitachi, and True SSFP on Toshiba machines. Here is a list of pulse sequence names from various MRI manufacturers. This Radiographics article gives more detail about MRI physics if you want to get into the nitty-gritty. Figure 2: Examples of MRI images from the same patient. From left to right, T1, T2, FLAIR, and T1 post-contrast images of the brain in a patient with a right frontal lobe brain tumor. Note that tissue types (fat, water, blood vessels) can appear differently depending on the pulse sequence and presence of IV contrast. How to Tell the Difference Between a CT Scan and an MRI Scan? A Step by Step Guide Step 1: Read the Radiologist's Report The easiest way to tell what kind of a scan you had is to read the radiologist's report. All reports began with a formal title that will say what kind of scan you had, what body part was imaged, and whether IV contrast was used, for example "MRI brain with and without IV contrast," or "CT abdomen and pelvis without contrast." Step 2: Remember Your Experience in the MRI or CT (CAT) Scanner Were you on the scanner table for less than 10 minutes? If so you probably had a CT scan as MRIs take much longer. Did you have to wear earmuffs to protect your hearing from loud banging during the scan? If so, that was an MRI as the shifting magnetic fields cause the internal components of the machine to make noise. Did you have to drink lots of nasty flavored liquid a few hours before the scan? If so, this is oral contrast and is almost always for a CT. How to tell the difference between CT and MRI by looking at the pictures If you don't have access to the radiology report and don't remember the experience in the scanner because the scan was A) not done on you, or you were to drunk/high/sedated to remember, then you may have to figure out what kind of scan you had by looking at the pictures. This can be complicated, but don't fear I'll show you how to figure it out in this section. First, you need to get a copy of your scan. You can usually get this from the radiology or imaging department at the hospital or clinic where you had the scan performed. Typically these come on a CD or DVD. The disc may already have a program that will allow you to view the scan. If it doesn't, you'll have to download a program capable of reading DICOM files, such as 3D Slicer. Open your scan according to the instructions of your specific program. You may notice that your scan is composed of several sets of images, called series. Each series contains a stack of images. For CT scans these are usually images in different planes (axial, coronal, and sagittal) or before and after administration of IV contrast. For MRI each series is usually a different pulse sequence, which may also be before or after IV contrast. Step 3: Does the medical imaging software program tell you what kind of scan you have? Most imaging software programs will tell you what kind of scan you have under a field called "modality." The picture below shows a screen capture from 3D Slicer. Looking at the Modality column makes it pretty obvious that this is a CT scan. Figure 3: A screen capture from the 3D Slicer program shows the kind of scan under the modality column. Step 4: Can you see the CAT scan or MRI table the patient is laying on? If you can see the table that the patient is laying on or a brace that their head or other body part is secured in, you probably have a CT scan. MRI tables and braces are designed of materials that don't give off a signal in the MRI machine, so they are invisible. CT scan tables absorb some of the x-ray photons used to make the picture, so they are visible on the scan. Figure 4: A CT scan (left) and MRI (right) that show the patient table visible on the CT but not the MRI. Step 5: Is fat or water white? MRI usually shows fat and water as white. In MRI scans the fat underneath the skin or reservoirs of water in the body can be either white or dark in appearance, depending on the pulse sequence. For CT however, fat and water are almost never white. Look for fat just underneath the skin in almost any part of the body. Structures that contained mostly water include the cerebrospinal fluid around the spinal cord in the spinal canal and around the brain, the vitreous humor inside the eyeballs, bile within the gallbladder and biliary tree of the liver, urine within the bladder and collecting systems of the kidneys, and in some abnormal states such as pleural fluid in the thorax and ascites in the abdomen. It should be noted that water-containing structures can be made to look white on CT scans by intentional mixing of contrast in the structures in highly specialized scans, such as in a CT urogram or CT myelogram. But in general if either fat or fluid in the body looks white, you are dealing with an MRI. Step 6: Is the bone black? CT never shows bones as black. If you can see bony structures on your scan and they are black or dark gray in coloration, you are dealing with an MRI. On CT scans the bone is always white because the calcium blocks (attenuates) the x-ray photons. The calcium does not emit a signal in MRI scans, and thus appears dark. Bone marrow can be made to also appear dark on certain MRI pulse sequences, such as STIR sequences. If your scan shows dark bones and bone marrow, you are dealing with an MRI. A question I am often asked is "If bones are white on CT scans, if I see white bones can I assume it is a CT?" Unfortunately not. The calcium in bones does not emit signal on MRI and thus appears black. However, many bones also contain bone marrow which has a great deal of fat. Certain MRI sequences like T1 and T2 depict fat as bright white, and thus bone marrow-containing bone will look white on the scans. An expert can look carefully at the bone and discriminate between the calcium containing cortical bone and fat containing medullary bone, but this is beyond what a layperson will notice without specialized training. Self Test: Examples of CT and MRI Scans Here are some examples for you to test your newfound knowledge. Example 1 Figure 5A: A mystery scan of the brain Look at the scan above. Can you see the table that the patient is laying on? No, so this is probably an MRI. Let's not be hasty in our judgment and find further evidence to confirm our suspicion. Is the cerebrospinal fluid surrounding the brain and in the ventricles of the brain white? No, on this scan the CSF appears black. Both CT scans and MRIs can have dark appearing CSF, so this doesn't help us. Is the skin and thin layer of subcutaneous fat on the scalp white? Yes it is. That means this is an MRI. Well, if this is an MRI than the bones of the skull, the calvarium, should be dark, right? Yes, and indeed the calvarium is as shown in Figure 5B. You can see the black egg shaped oval around the brain, which is the calcium containing skull. The only portion of the skull that is white is in the frontal area where fat containing bone marrow is present between two thin layers of calcium containing bony cortex. This is an MRI. Figure 5B: The mystery scan is a T1 spoiled gradient echo MRI image of the brain. Incidentally this person has a brain tumor involving the left frontal lobe. Example 2 Figure 6A: Another mystery scan of the brain Look at the scan above. Let's go through our process to determine if this is a CT or MRI. First of all, can you see the table the patient is lying on or brace? Yes you can, there is a U-shaped brace keeping the head in position for the scan. We can conclude that this is a CT scan. Let's investigate further to confirm our conclusion. Is fat or water white? If either is white, then this is an MRI. In this scan we can see both fat underneath the skin of the cheeks which appears dark gray to black. Additionally, the material in the eyeball is a dark gray, immediately behind the relatively white appearing lenses of the eye. Finally, the cerebrospinal fluid surrounding the brainstem appears gray. This is not clearly an MRI, which further confirms our suspicion that it is a CT. If indeed this is a CT, then the bones of the skull should be white, and indeed they are. You can see the bright white shaped skull surrounding the brain. You can even see part of the cheekbones, the zygomatic arch, extending forward just outside the eyes. This is a CT scan. Figure 6B: The mystery scan is a CT brain without IV contrast. Example 3 Figure 7A: A mystery scan of the abdomen In this example we see an image through the upper abdomen depicting multiple intra-abdominal organs. Let's use our methodology to try and figure out what kind of scan this is. First of all, can you see the table that the patient is laying on? Yes you can. That means we are dealing with the CT. Let's go ahead and look for some additional evidence to confirm our suspicion. Do the bones appear white? Yes they do. You can see the white colored thoracic vertebrae in the center of the image, and multiple ribs are present, also white. If this is indeed a CT scan than any water-containing structures should not be white, and indeed they are not. In this image there are three water-containing structures. The spinal canal contains cerebrospinal fluid (CSF). The pickle shaped gallbladder can be seen just underneath the liver. Also, this patient has a large (and benign) left kidney cyst. All of these structures appear a dark gray. Also, the fat underneath the skin is a dark gray color. This is not in MRI. It is a CT. Figure 7B: The mystery scan is a CT of the abdomen with IV contrast Example 4 Figure 8A: A mystery scan of the left thigh Identifying this scan is challenging. Let's first look for the presence of the table. We don't see one but the image may have been trimmed to exclude it, or the image area may just not be big enough to see the table. We can't be sure a table is in present but just outside the image. Is the fat under the skin or any fluid-filled structures white? If so, this would indicate it is an MRI. The large white colored structure in the middle of the picture is a tumor. The fat underneath the skin is not white, it is dark gray in color. Also, the picture is through the mid thigh and there are no normal water containing structures in this area, so we can't use this to help us. Well, if this is a CT scan than the bone should be white. Is it? The answer is no. We can see a dark donut-shaped structure just to the right of the large white tumor. This is the femur bone, the major bone of the thigh and it is black. This cannot be a CT. It must be an MRI. This example is tricky because a fat suppression pulse sequence was used to turn the normally white colored fat a dark gray. Additionally no normal water containing structures are present on this image. The large tumor in the mid thigh is lighting up like a lightbulb and can be confusing and distracting. But, the presence of black colored bone is a dead giveaway. Figure 8B: The mystery scan is a contrast-enhanced T2 fat-suppressed MRI Conclusion: Now You Can Determine is a Scan is CT or MRI This tutorial outlines a simple process that anybody can use to identify whether a scan is a CT or MRI. The democratiz3D service on this website can be used to convert any CT scan into a 3D printable bone model. Soon, a feature will be added that will allow you to convert a brain MRI into a 3D printable model. Additional features will be forthcoming. The service is free and easy to use, but you do need to tell it what kind of scan your uploading. Hopefully this tutorial will help you identify your scan. If you'd like to learn more about the democratiz3D service click here. Thank you very much and I hope you found this tutorial to be helpful. Nothing in this article should be considered medical advice. If you have a medical question, ask your doctor.
  20. 1 point
    Great blog! Its the easiest way in which someone must have explained the difference between CT scan and MRI scan. Thanks for sharing such a wonderful blog, most of the people would like it. I would also like to know the difference between Ultrasound, MRI, and CT scan.
  21. 1 point

    Version 1.0.0

    25 downloads

    The Venous Drainage of the Central Nervous System. Model from MRI data. Anatomy plate from Gray's Anatomy.

    Free

  22. 1 point

    Version STL

    44 downloads

    This is a .stl file of a left temporal bone ready for 3d printing. I have segmented a CT scan paying attention to all the important bony structures of the ear. In the .stl screenshots you can see the mastoid, malleus, incus, the bony canal of the facial nerve, the stylomastoid foramen Etc. I do this for my training and the idea is to perform a mastoidectomy just in my desktop i have printed my personal 3d plaster model (you can see in the screenshots) but i haven't the courage to destroy it whit the drill..... I hope that my work can be of help to anyone who wants to try to drill a faithful model of temporal bone at home or simply want to study the anatomy in a versatile 3d .stl Model Good Job Nicola Di Giuseppe M.D.

    $2.99

  23. 1 point

    Version 1.0.0

    29 downloads

    This model is the right lower extremity bone rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing. The leg includes the area between the knee and the ankle and houses the tibia and fibula. The proximal tibia includes the medial plateau (which is concave) and the lateral plateau (which is convex). The Proximal tibia has a 7-10 degree posterior slope. The tibial tuberosity is located on the anterior proximal tibia, which is where the patellar tendon attaches. On the anteromedial surface of the tibia is Gerdy's tubercle, where the sartorius, gracilis, and semitendinosus attach. The distal tibia creates the superior and medial (plafond and medial malleolus) of the ankle joint. The proximal fibula is the attachment for the posterolateral corner structures of the knee joint. The peroneal nerve wraps around the fibular neck. The distal fibula is the lateral malleolus and a common site for ankle fractures. The ankle is a hinge (or ginglymus) joint made of the distal tibia (tibial plafond, medial and posterior malleoli) superiorly and medially, the distal fibula (lateral malleolus) laterally and the talus inferiorly. Together, these structures form the ankle “mortise”, which refers to the bony arch. Normal range of motion is 20 degrees dorsiflexion and 50 degrees plantarflexion. Stability is provided by the anterior talofibular ligament (ATFL), calcaneofibular ligament (CFL), and posterior talofibular ligament (PTFL) laterally, and the superficial and deep deltoid ligaments medially. The ankle is one of my most common sites of musculoskeletal injury, including ankle fractures and ankle sprains, due to the ability of the joint to invert and evert. The most common ligament involved in the ATFL. The foot is commonly divided into three segments: hindfoot, midfoot, and forefoot. These sections are divided by the transverse tarsal joint (between the talus and calcaneus proximally and navicular and cuboid distally), and the tarsometatarsal joint (between the cuboids and cuneiforms proximally and the metatarsals distally). The first tarsometatarsal joint (medially) is termed the “Lisfranc” joint, and is the site of the Lisfranc injury seen primarily in athletic injuries. This model was created from the file STS_022.

    Free

  24. 1 point

    Version

    148 downloads

    Alzheimer's disease is the 6th leading cause of death in the United States, according to the Centers for Disease Control and Prevention, responsible for 85,000 deaths annually. These STL files allow you to 3D print a whole brain model with Alzheimers disease and another model of the enlarged brain ventricles associated with the disease. Alzheimer's is a neurodegenerative disease usually seen in the later stages of life. Problems with memory, behavior, performing daily activities and personality changes are common symptoms. It is a progressive disease, where dementia symptoms gradually worsen over a number of years. The destruction and loss of nerve cells associated with this disease are represented in the models. The models are provided for distribution on embodi3D.com with the permission of the creators Dr. Beth Ripley and Dr. Tatiana. These models are part of the Top 10 Killers 3D printable disease library. James Weaver and Ahmed Hosny also contributed to the project. We thank everyone involved for their contributions to embodi3d.com and their advocacy for better health and education through 3D printing. There are two STL files available for download and 3D bioprinting. One STL file for printing the ventricles and the other STL is for printing the whole brain. These files are distributed under the Creative Commons license Attribution-NonCommercial-NoDerivs. Please respect the terms of the licensing agreement. Both files are verified as watertight (manifold) and 3D printable.

    Free

  25. 1 point

    Version

    403 downloads

    This object was converted from a CT DICOM dataset of a male skull. The CT slice width was 1 mm (which is quite crude compared to today's scanners) and there were 245 slices in total. Although most of the orphaned pieces have been removed (for printing) using Meshlab the internal structure is still very complex. The vertex count was reduced for simplification but no smoothing was applied to the surface. Some bony artefact holes were filled but on the whole the structure is as per the CT scan. Once again, thank you to Dr Mike for the excellent renders and . Find us at www.healthphysics.com.au

    Free

This leaderboard is set to Los Angeles/GMT-07:00
×