Jump to content

Leaderboard


Popular Content

Showing content with the highest reputation since 12/22/2018 in all areas

  1. 2 points
    I am a neurosurgeon. The simplest way to solve most of our problems in a low cost and rather according to the rules way is to first to print the patients skull (easy). Than to form manually, slowly and exactly a lacking bone from the cheap, available everywhere in the world dental molds (I have succeeded with silicone prosthetic mold). When the bone substitute is ready and firm, then make an impress in a stomatologic acrylic mass (methacrylate, the ubiquitous surgical material), also available everywhere. Its the same component that we use to form a bone in the operating theatre, but not sterile. If you have the mold ready, you can sterilise it in a plasma autoclave, put in a sterile foil bag in the operating theatre and then form in this foil and form a lacking skull piece from a classic methacrylate. Sterile, with all of the certificates needed. It does work. Ready 3D printed skull flaps are often imperfect. I.e. they do not take into consideration brain swelling, soft tissue remodelling etc. The mold and forming the bone flap during surgery from PMMA seems to be much more versatile. And you do not have to throw away the bone substitute of 2000 USD into trash. Best regards, Piotr
  2. 1 point

    Version 1.0.0

    17 downloads

    polytrauma pelvis - stl file processed polytrauma right hemipelvis fracture S1-S2 fracture arcade ischio et illio pubienne date trauma : 04/17 date irm : 04/18 This file was created with democratiz3D. Automatically create 3D printable models from CT scans. Learn more. pelvis, hip, ilium,ischium, pubis, obturador, sacrum, lumbar, spine, sacroiliac, joint, fracture, iliac, crest, coccyx, 3d, model, .stl, printable,

    Free

  3. 1 point

    Version 1.0.0

    8 downloads

    Ankmr - stl file processed This file was created with democratiz3D. Automatically create 3D printable models from CT scans. Learn more. bone, .stl, 3d, model, printable, frontal, temporal, parietal, occipital, craniotomy, skull, head, zygomatic, arch, fracture, maxilla, mandible, angle, ramus, body, mastoid, process, styloid, pterygoid, clinoid, apophysis, sphenoid, orbit, petrous, ridge, facial, nasal,

    Free

  4. 1 point

    Version 1.0.0

    14 downloads

    Salim ali al badi - stl file processed This file was created with democratiz3D. Automatically create 3D printable models from CT scans. Learn more.

    Free

  5. 1 point
    Dear all, I'd like to add something to my original post. I advised to buy the canvas hub. Don't do it! It's just a Raspberry Pi Zero W with Octoprint on it. Instad you should buy a Raspberry Pi 3 B+ (or newer) and install Octoprint yourself on it. Setup guide at: Canvas Octoprint Guide. The whole system will work with less lags because the Zero W is a lot slower than the 3B+ and you will save some money Regarding Printing time. When you have the possibility to purge into infill (available with Prusa system and in the near future with the Palette 2) the purge block will shrink if you print bigger parts (more infill). The lumbar spine I've printed is cut through the middle and I've printed both parts at once: No supports 30% infill 3 perimeters 0.15 layer hight (0.4 nozzle) Total print time 44 hours on my Prusa MMU2. (around 270 color changes) (Palette 2 should be about the same time.) Total print time as a single color print would be 38 hours. Soluble supports. I print all my (interface) supports with Verbatim BVOH. It works great with PLA but ... Maximum printing speed is around 20 mm/s (so way slower than PLA) You have to purge a lot (at least 120 mm^3 on every change which is about double the amount for a normal color change and it should be even more with the Palette 2) You have to use a container with low humidity and sometimes dry it. Palette 2 with dual extruder. It doesn't work atm. Since it is a very closed system it should be extremely difficult if not impossible for some one from the community to add this feature. If the company behind the product is working on this I don't know.
  6. 1 point
    After several weeks of multi color/material printing with my FDM printer Prusa MK3 (I have other Printers too) with the Multi Material Unit 2 (MMU2) I'd like to share my results with you. Another interesting product regarding multimaterial is the Mosaic Palette 2. I don't own that unit at the moment but I know people who are using the system and I talked a lot with them about the unit so I will share their experience also with you. First of all, some general info. The Prusa MK3 costs as a build kit 769€ and fully assembled 999€. The MMU2 unit comes only as a kit and costs 300€. It can print with up to 5 materials. It can only be used with a Prusa printer out of the box. (Firmware is open source so in theory you could tinker it to work with other printers). Prusa has also their own (open source) slicer called Slic3er PE. The Palette 2 comes in two versions, the standard and the pro. Both versions can print with up to 4 materials. I highly recommend the pro version because it has a better warranty and comes with better quality parts. I also recommend the canvas hub option because it makes it easier to connect the system to your printer. That would result in a total prise of 878 USD. The Palette 3 can only be used with 3D printers that use 1.75 mm filament. So it can't be used with something like an Ultimaker. One more thing about filament. Prusa has now their own filament called Prusament. It is produced with a tolerance of +/- 0.02 mm in diameter. And you get a QR code with your spool to check the measuring yourself. Every spool is measured 100%. One (and only) advantage of the 2.85 mm filament that Ultimaker is using is that it is easier to produce precisely. If you are using 1.75 mm with +/- 0.02 mm that advantage is gone. First some thoughts on the MMU2. The MK3 produces very nice quality prints especially with high quality PLA like Prusament or PLA/PHA. That is mainly thanks to the Bondtech direct drive extruder. One other nice feature is the removable (magnetic flex steel) PEI bed. I guarantee you that if you are using this feature one time you will never never ever want a printer without it again. The basic principle of the system is that it adds a bowden system with a selector to the direct drive system. So the direct drive system pulls the filament up until the bowden system takes over. Than it switches the filament and the bowden system pushes the filament back to the direct drive gears. And so on ... As already mentioned it comes as a kit. And that is a BIG problem. Assembling it is not easy because you have to make sure that the filament path is as smoothly as possible. When you pull filament out from the hotend you can have tips with large strings or increased diameters. That will cause problems. To form the tips Slic3r PE has something called "ramming sequence". It tries to "form" the tips nicely like with no strings. This works good with Prusas own filament Prusament. It works also usually quite good with other filaments especially high quality ones like PLA/PHA. But there is no guarantee it works with the filament you are using so you might have to try different settings. So you have with the MMU2 basically two main problems. Assembling it so that everything runs perfectly smooth. And getting the ramming sequence settings right. A LOT of people are having problems with that. I had also try a lot out and it was frustrating at the beginning. I have now a working unit and prints are imho amazing. Now some words about the Palette 2 (pro). The principle of the machine is that it cuts the filaments and than splices them (melting) together. So you have one filament going out of the system with the right color combination for your model. It comes basically fully assembled. Installing the system to your printer takes maybe half an hour or so depending on your setup. So a LOT easier that the MMU2. One big problem right now is that their own slicer is very buggy and produces (especially on complex models) mediocre print quality. Sometimes it does even the color changes on the wrong location of the part. Combining your own more sophisticated slicer like Slic3er, Simplify3D or Cura with their system works also not reliably at the moment. Some general thoughts. Both systems produce purge towers. Every time when you change the color you have to get rid of the plastic from the old color in the hot end. How much you have to purge onto the tower is color dependent. E. g. switching from black to white or from PLA to BVOH as extreme scenarios. BUT as I mentioned the Palette splices the filaments together. That produces a color gradient in the filament of a few mm. That has to be purged additionally. So the purge amount of the Palette will always be bigger than the one of the MMU2. Slic3er PE has the option to "purge into infill" so it purges also into the objects infill. That option will come to the Palette 2 in the near future. I print a lot with BVOH and I know that it can work with the Palette too. But in both cases it adds complexity. Slic3er PE has the option for printing only support interface layers or completely supports with soluble material. I will start testing flexible materials in the near future. Customer support is pretty good with both companies. The forums are used very actively and you have also a very helpful chat support at Prusa. MMU2 Print: MMU2 Print: Kidney with tumor and magnet inserts MMU2 Fun prints: Palette slicing problems: Palette color gradient:
  7. 1 point
    The RSNA/SIG released a paper about guidelines for medical 3d printing. Download link e.g.: Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios On page 7 there is an interesting table with ratings from 1-9 about the usefulness of 3d printing on specific medical scenarios: 1-3: rarely appropriate 4-6: maybe appropriate 7-9: usually appropriate
  8. 1 point
    madjid_hatefi

    Converting Ultrasound Files

    Hi guys Does anybody know how to convert MVL. files (Fetus 3d ultrasound file) to DICOM or NRRD in order to making 3d model?
  9. 1 point
    kopachini

    Converting Ultrasound Files

    I found in the 3D Slicer forum this topic that may help you. There is software called TomoVision that could help you, but you must buy it. https://discourse.slicer.org/t/how-to-import-a-mvl-file-format-3d-ultrasound-image/3294
  10. 1 point
    As a general rule of thumb: Materials who like to string are not easy to print with the mmu2. ABS does not like to string so it should work well. PETG for example strings a lot therefore it is not easy to be used with the mmu2. If you want to print with PVA you probably will have a lot of problems. BVOH is easier to print with but has to be stored in very dry conditions.
  11. 1 point
    Wow, nice. Thank you for your true review of MMU2. Unfortunately, new orders for MMU begin in February 2019 and can't wait for it to begin Those prints look great. Are there any difficulties when printing ABS/PLA and PVA as support together in one print? PS. @Dr. Mike is this Palette Mosaic same thing you told me about in RSNA meeting?
  12. 1 point
    Flaviu

    Formlabs Fuse 1 SLS printer

    I'd like to warn everyone from using Prusas SLA or other cheap (Chinese) SLA printers instead of a Form 2. The Form 2 has a cartridge system for the resin. The cheaper SLA printers don't have that so you are a lot more "in contact" with the resin. This makes the whole process a lot more difficult/complex and might even be harmful to your health. 😐
  13. 1 point
    valchanov

    Formlabs Fuse 1 SLS printer

    There is a game changer on the SLA front - Josef Prusa made an open source SLA printer - Prusa SL1. You can buy two of those and one Prusa MK3 with the money for one Form 2. It prints down to 10 microns layer thickness (after some tweaking of the slicer). It is open source, which means that the wave of cheap prusa clones is coming. This will change the whole SLA sector because let's face it - with the money for one Form 2 you can buy a whole 3D printer farm with the best printer of Winter 2018 (Prusa MK3) or you can buy two printers of the same class, with the same parameters, which requires more tinkering and experienced staff. The bad side about the Prusa printers are the limited Wi Fi options...
  14. 1 point

    Version 1.0.0

    4 downloads

    This noncontract Facial CT scan of a gunshot to the face is the scan file used in the 2018 RSNA meeting Intro to Open Source 3D printing sofware course (RCA 35). View the full tutorial here. It is a trimmed version of the facial CT originally uploaded and shared by Imagineitalaska.

    Free

  15. 1 point
    JAWSDOC

    Kurt Kersten

    Version 1.0.0

    3 downloads

    For STL Conversion, ct, scan, without, contrast, .stl, 3d, model, printable, dental, dentistry, implant, teeth

    Free

  16. 1 point
    If you are planning on using the democratiz3D service to automatically convert a medical scan to a 3D printable STL model, or you just happen to be working with medical scans for another reason, it is important to know if you are working with a CT (Computed Tomography or CAT) or MRI (Magnetic Resonance Imaging) scan. In this tutorial I'll show you how to quickly and easily tell the difference between a CT and MRI. I am a board-certified radiologist, and spent years mastering the subtleties of radiology physics for my board examinations and clinical practice. My goal here is not to bore you with unnecessary detail, although I am capable of that, but rather to give you a quick, easy, and practical way to understand the difference between CT and MRI if you are a non-medical person. Interested in Medical 3D Printing? Here are some resources: Free downloads of hundreds of 3D printable medical models. Automatically generate your own 3D printable medical models from CT scans. Have a question? Post a question or comment in the medical imaging forum. A Brief Overview of How CT and MRI Works For both CT (left) and MRI (right) scans you will lie on a moving table and be put into a circular machine that looks like a big doughnut. The table will move your body into the doughnut hole. The scan will then be performed. You may or may not get IV contrast through an IV. The machines look very similar but the scan pictures are totally different! CT and CAT Scans are the Same A CT scan, from Computed Tomography, and a CAT scan from Computed Axial Tomography are the same thing. CT scans are based on x-rays. A CT scanner is basically a rotating x-ray machine that takes sequential x-ray pictures of your body as it spins around. A computer then takes the data from the individual images, combines that with the known angle and position of the image at the time of exposure, and re-creates a three-dimensional representation of the body. Because CT scans are based on x-rays, bones are white and air is black on a CT scan just as it is on an x-ray as shown in Figure 1 below. Modern CT scanners are very fast, and usually the scan is performed in less than five minutes. Figure 1: A standard chest x-ray. Note that bones are white and air is black. Miscle and fat are shades of gray. CT scans are based on x-ray so body structures have the same color as they don on an x-ray. How does MRI Work? MRI uses a totally different mechanism to generate an image. MRI images are made using hydrogen atoms in your body and magnets. Yes, super strong magnets. Hydrogen is present in water, fat, protein, and most of the "soft tissue" structures of the body. The doughnut of an MRI does not house a rotating x-ray machine as it does in a CT scanner. Rather, it houses a superconducting electromagnet, basically a super strong magnet. The hydrogen atoms in your body line up with the magnetic field. Don't worry, this is perfectly safe and you won't feel anything. A radio transmitter, yes just like an FM radio station transmitter, will send some radio waves into your body, which will knock some of the hydrogen atoms out of alignment. As the hydrogen nuclei return back to their baseline position they emit a signal that can be measured and used to generate an image. MRI Pulse Sequences Differ Among Manufacturers The frequency, intensity, and timing of the radio waves used to excite the hydrogen atoms, called a "pulse sequence," can be modified so that only certain hydrogen atoms are excited and emit a signal. For example, when using a Short Tau Inversion Recovery (STIR) pulse sequence hydrogen atoms attached to fat molecules are turned off. When using a Fluid Attenuation Inversion Recovery (FLAIR) pulse sequence, hydrogen atoms attached to water molecules are turned off. Because there are so many variables that can be tweaked there are literally hundreds if not thousands of ways that pulse sequences can be constructed, each generating a slightly different type of image. To further complicate the matter, medical scanner manufacturers develop their own custom flavors of pulse sequences and give them specific brand names. So a balanced gradient echo pulse sequence is called True FISP on a Siemens scanner, FIESTA on a GE scanner, Balanced FFE on Philips, BASG on Hitachi, and True SSFP on Toshiba machines. Here is a list of pulse sequence names from various MRI manufacturers. This Radiographics article gives more detail about MRI physics if you want to get into the nitty-gritty. Figure 2: Examples of MRI images from the same patient. From left to right, T1, T2, FLAIR, and T1 post-contrast images of the brain in a patient with a right frontal lobe brain tumor. Note that tissue types (fat, water, blood vessels) can appear differently depending on the pulse sequence and presence of IV contrast. How to Tell the Difference Between a CT Scan and an MRI Scan? A Step by Step Guide Step 1: Read the Radiologist's Report The easiest way to tell what kind of a scan you had is to read the radiologist's report. All reports began with a formal title that will say what kind of scan you had, what body part was imaged, and whether IV contrast was used, for example "MRI brain with and without IV contrast," or "CT abdomen and pelvis without contrast." Step 2: Remember Your Experience in the MRI or CT (CAT) Scanner Were you on the scanner table for less than 10 minutes? If so you probably had a CT scan as MRIs take much longer. Did you have to wear earmuffs to protect your hearing from loud banging during the scan? If so, that was an MRI as the shifting magnetic fields cause the internal components of the machine to make noise. Did you have to drink lots of nasty flavored liquid a few hours before the scan? If so, this is oral contrast and is almost always for a CT. How to tell the difference between CT and MRI by looking at the pictures If you don't have access to the radiology report and don't remember the experience in the scanner because the scan was A) not done on you, or you were to drunk/high/sedated to remember, then you may have to figure out what kind of scan you had by looking at the pictures. This can be complicated, but don't fear I'll show you how to figure it out in this section. First, you need to get a copy of your scan. You can usually get this from the radiology or imaging department at the hospital or clinic where you had the scan performed. Typically these come on a CD or DVD. The disc may already have a program that will allow you to view the scan. If it doesn't, you'll have to download a program capable of reading DICOM files, such as 3D Slicer. Open your scan according to the instructions of your specific program. You may notice that your scan is composed of several sets of images, called series. Each series contains a stack of images. For CT scans these are usually images in different planes (axial, coronal, and sagittal) or before and after administration of IV contrast. For MRI each series is usually a different pulse sequence, which may also be before or after IV contrast. Step 3: Does the medical imaging software program tell you what kind of scan you have? Most imaging software programs will tell you what kind of scan you have under a field called "modality." The picture below shows a screen capture from 3D Slicer. Looking at the Modality column makes it pretty obvious that this is a CT scan. Figure 3: A screen capture from the 3D Slicer program shows the kind of scan under the modality column. Step 4: Can you see the CAT scan or MRI table the patient is laying on? If you can see the table that the patient is laying on or a brace that their head or other body part is secured in, you probably have a CT scan. MRI tables and braces are designed of materials that don't give off a signal in the MRI machine, so they are invisible. CT scan tables absorb some of the x-ray photons used to make the picture, so they are visible on the scan. Figure 4: A CT scan (left) and MRI (right) that show the patient table visible on the CT but not the MRI. Step 5: Is fat or water white? MRI usually shows fat and water as white. In MRI scans the fat underneath the skin or reservoirs of water in the body can be either white or dark in appearance, depending on the pulse sequence. For CT however, fat and water are almost never white. Look for fat just underneath the skin in almost any part of the body. Structures that contained mostly water include the cerebrospinal fluid around the spinal cord in the spinal canal and around the brain, the vitreous humor inside the eyeballs, bile within the gallbladder and biliary tree of the liver, urine within the bladder and collecting systems of the kidneys, and in some abnormal states such as pleural fluid in the thorax and ascites in the abdomen. It should be noted that water-containing structures can be made to look white on CT scans by intentional mixing of contrast in the structures in highly specialized scans, such as in a CT urogram or CT myelogram. But in general if either fat or fluid in the body looks white, you are dealing with an MRI. Step 6: Is the bone black? CT never shows bones as black. If you can see bony structures on your scan and they are black or dark gray in coloration, you are dealing with an MRI. On CT scans the bone is always white because the calcium blocks (attenuates) the x-ray photons. The calcium does not emit a signal in MRI scans, and thus appears dark. Bone marrow can be made to also appear dark on certain MRI pulse sequences, such as STIR sequences. If your scan shows dark bones and bone marrow, you are dealing with an MRI. A question I am often asked is "If bones are white on CT scans, if I see white bones can I assume it is a CT?" Unfortunately not. The calcium in bones does not emit signal on MRI and thus appears black. However, many bones also contain bone marrow which has a great deal of fat. Certain MRI sequences like T1 and T2 depict fat as bright white, and thus bone marrow-containing bone will look white on the scans. An expert can look carefully at the bone and discriminate between the calcium containing cortical bone and fat containing medullary bone, but this is beyond what a layperson will notice without specialized training. Self Test: Examples of CT and MRI Scans Here are some examples for you to test your newfound knowledge. Example 1 Figure 5A: A mystery scan of the brain Look at the scan above. Can you see the table that the patient is laying on? No, so this is probably an MRI. Let's not be hasty in our judgment and find further evidence to confirm our suspicion. Is the cerebrospinal fluid surrounding the brain and in the ventricles of the brain white? No, on this scan the CSF appears black. Both CT scans and MRIs can have dark appearing CSF, so this doesn't help us. Is the skin and thin layer of subcutaneous fat on the scalp white? Yes it is. That means this is an MRI. Well, if this is an MRI than the bones of the skull, the calvarium, should be dark, right? Yes, and indeed the calvarium is as shown in Figure 5B. You can see the black egg shaped oval around the brain, which is the calcium containing skull. The only portion of the skull that is white is in the frontal area where fat containing bone marrow is present between two thin layers of calcium containing bony cortex. This is an MRI. Figure 5B: The mystery scan is a T1 spoiled gradient echo MRI image of the brain. Incidentally this person has a brain tumor involving the left frontal lobe. Example 2 Figure 6A: Another mystery scan of the brain Look at the scan above. Let's go through our process to determine if this is a CT or MRI. First of all, can you see the table the patient is lying on or brace? Yes you can, there is a U-shaped brace keeping the head in position for the scan. We can conclude that this is a CT scan. Let's investigate further to confirm our conclusion. Is fat or water white? If either is white, then this is an MRI. In this scan we can see both fat underneath the skin of the cheeks which appears dark gray to black. Additionally, the material in the eyeball is a dark gray, immediately behind the relatively white appearing lenses of the eye. Finally, the cerebrospinal fluid surrounding the brainstem appears gray. This is not clearly an MRI, which further confirms our suspicion that it is a CT. If indeed this is a CT, then the bones of the skull should be white, and indeed they are. You can see the bright white shaped skull surrounding the brain. You can even see part of the cheekbones, the zygomatic arch, extending forward just outside the eyes. This is a CT scan. Figure 6B: The mystery scan is a CT brain without IV contrast. Example 3 Figure 7A: A mystery scan of the abdomen In this example we see an image through the upper abdomen depicting multiple intra-abdominal organs. Let's use our methodology to try and figure out what kind of scan this is. First of all, can you see the table that the patient is laying on? Yes you can. That means we are dealing with the CT. Let's go ahead and look for some additional evidence to confirm our suspicion. Do the bones appear white? Yes they do. You can see the white colored thoracic vertebrae in the center of the image, and multiple ribs are present, also white. If this is indeed a CT scan than any water-containing structures should not be white, and indeed they are not. In this image there are three water-containing structures. The spinal canal contains cerebrospinal fluid (CSF). The pickle shaped gallbladder can be seen just underneath the liver. Also, this patient has a large (and benign) left kidney cyst. All of these structures appear a dark gray. Also, the fat underneath the skin is a dark gray color. This is not in MRI. It is a CT. Figure 7B: The mystery scan is a CT of the abdomen with IV contrast Example 4 Figure 8A: A mystery scan of the left thigh Identifying this scan is challenging. Let's first look for the presence of the table. We don't see one but the image may have been trimmed to exclude it, or the image area may just not be big enough to see the table. We can't be sure a table is in present but just outside the image. Is the fat under the skin or any fluid-filled structures white? If so, this would indicate it is an MRI. The large white colored structure in the middle of the picture is a tumor. The fat underneath the skin is not white, it is dark gray in color. Also, the picture is through the mid thigh and there are no normal water containing structures in this area, so we can't use this to help us. Well, if this is a CT scan than the bone should be white. Is it? The answer is no. We can see a dark donut-shaped structure just to the right of the large white tumor. This is the femur bone, the major bone of the thigh and it is black. This cannot be a CT. It must be an MRI. This example is tricky because a fat suppression pulse sequence was used to turn the normally white colored fat a dark gray. Additionally no normal water containing structures are present on this image. The large tumor in the mid thigh is lighting up like a lightbulb and can be confusing and distracting. But, the presence of black colored bone is a dead giveaway. Figure 8B: The mystery scan is a contrast-enhanced T2 fat-suppressed MRI Conclusion: Now You Can Determine is a Scan is CT or MRI This tutorial outlines a simple process that anybody can use to identify whether a scan is a CT or MRI. The democratiz3D service on this website can be used to convert any CT scan into a 3D printable bone model. Soon, a feature will be added that will allow you to convert a brain MRI into a 3D printable model. Additional features will be forthcoming. The service is free and easy to use, but you do need to tell it what kind of scan your uploading. Hopefully this tutorial will help you identify your scan. If you'd like to learn more about the democratiz3D service click here. Thank you very much and I hope you found this tutorial to be helpful. Nothing in this article should be considered medical advice. If you have a medical question, ask your doctor.
  17. 1 point

    Version STL

    38 downloads

    This is a .stl file of a left temporal bone ready for 3d printing. I have segmented a CT scan paying attention to all the important bony structures of the ear. In the .stl screenshots you can see the mastoid, malleus, incus, the bony canal of the facial nerve, the stylomastoid foramen Etc. I do this for my training and the idea is to perform a mastoidectomy just in my desktop i have printed my personal 3d plaster model (you can see in the screenshots) but i haven't the courage to destroy it whit the drill..... I hope that my work can be of help to anyone who wants to try to drill a faithful model of temporal bone at home or simply want to study the anatomy in a versatile 3d .stl Model Good Job Nicola Di Giuseppe M.D.

    $2.99

  18. 1 point
    I was also interested into making craniofacial implants, and also i have found MeVisLab free software, but i found it very complex to work with. Than also i tried with Geomagic Sculpt and Freeform, but as Saumyam mentioned they are pretty expencive (retailer in my country said that the price is aroud 2000€ for Sculpt, and 6000 € for Freeform, and 8000 € for Freeform Plus). It was very hard to work with Geomagic sculpt (laggs, unresponsice control etc.), but Freeform was discovery and I am very pleased with that software. Here is model of custom made cranial implant that I made using Geomagic Freeform trial version and Blender. Few details remain to be done on it.
  19. 1 point
  20. 1 point

    Version

    130 downloads

    Alzheimer's disease is the 6th leading cause of death in the United States, according to the Centers for Disease Control and Prevention, responsible for 85,000 deaths annually. These STL files allow you to 3D print a whole brain model with Alzheimers disease and another model of the enlarged brain ventricles associated with the disease. Alzheimer's is a neurodegenerative disease usually seen in the later stages of life. Problems with memory, behavior, performing daily activities and personality changes are common symptoms. It is a progressive disease, where dementia symptoms gradually worsen over a number of years. The destruction and loss of nerve cells associated with this disease are represented in the models. The models are provided for distribution on embodi3D.com with the permission of the creators Dr. Beth Ripley and Dr. Tatiana. These models are part of the Top 10 Killers 3D printable disease library. James Weaver and Ahmed Hosny also contributed to the project. We thank everyone involved for their contributions to embodi3d.com and their advocacy for better health and education through 3D printing. There are two STL files available for download and 3D bioprinting. One STL file for printing the ventricles and the other STL is for printing the whole brain. These files are distributed under the Creative Commons license Attribution-NonCommercial-NoDerivs. Please respect the terms of the licensing agreement. Both files are verified as watertight (manifold) and 3D printable.

    Free

  21. 1 point

    Version

    379 downloads

    This object was converted from a CT DICOM dataset of a male skull. The CT slice width was 1 mm (which is quite crude compared to today's scanners) and there were 245 slices in total. Although most of the orphaned pieces have been removed (for printing) using Meshlab the internal structure is still very complex. The vertex count was reduced for simplification but no smoothing was applied to the surface. Some bony artefact holes were filled but on the whole the structure is as per the CT scan. Once again, thank you to Dr Mike for the excellent renders and . Find us at www.healthphysics.com.au

    Free

  22. 0 points
    Laurent

    mouton

    Version 1.0.0

    51 downloads

    CT scan sheep

    Free

  23. 0 points
    Lane

    mri

    Version 1.0.0

    32 downloads

    mri test scan

    Free

  24. 0 points
    rasha

    CT images

    Version 1.0.0

    40 downloads

    more info is needed here struct_set_2017-05-31_15-31-43.dcm

    Free

This leaderboard is set to Los Angeles/GMT-08:00
×