Jump to content
  • Welcome to embodi3D Downloads! This is the largest and fastest growing library of 3D printable anatomic models generated from real medical scans on the Internet. A unique scientific resource, most of the material is free. Registered members can download, upload, and sell models. To convert your own medical scans to a 3D model, take a look at democratiz3D, our free and automated conversion service.

     

    Alert (6/17/22) - The democratiz3D scan-to-model conversion app is down due to a technical issue. We are working on a solution. 

Extremity, Lower (Leg) Muscles

Muscles of the thigh, leg, and foot.

139 files

  1. Free

    Normal Right Foot and Ankle Muscle Model 3D Printable STL File Converted from CT Scan

    This is the normal right foot and ankle muscle model of a 56-year-old male with right anterior thigh pleomorphic leiomyosarcoma. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing.
     
    The primary motions of the ankle are dorsiflexion, plantarflexion, inversion, and eversion. However, with the addition of midfoot motion (adduction, and abduction), the foot may supinate (inversion and adduction) or pronate (eversion and abduction). In order to accomplish these motions, muscles outside of the foot (extrinsic) and muscles within the foot (intrinsic) attach throughout the foot, crossing one or more joints.
     
    Laterally, the peroneus brevis and tertius attach on the proximal fifth metatarsal to evert the foot. The peroneus longus courses under the cuboid to attach on the plantar surface of the first metatarsal, acting as the primary plantarflexor of the first ray and, secondarily, the foot. Together, these muscles also assist in stabilizing the ankle for patients with deficient lateral ankle ligaments from chronic sprains. Medially, the posterior tibialis inserts on the plantar aspect of the navicular cuneiforms and metatarsal bases, acting primarily to invert the foot and secondarily to plantarflex the foot.  The flexor hallucis longus inserts on the base of the distal phalanx of the great toe to plantarflex the great toe, and the flexor digitorum inserts on the bases of the distal phalanges of the lesser four toes, acting to plantarflex the toes. The gastrocnemius inserts on the calcaneus as the Achilles tendon and plantarflexes the foot. Anteriorly, the tibialis anterior inserts on the dorsal medial cuneiform and plantar aspect of the first metatarsal base as the primary ankle dorsiflexor and secondary inverter. The Extensor hallucis longus and extensor digitorum longus insert on the dorsal aspect of the base of the distal phalanges to dorsiflex the great toe and lesser toes, respectively.
     
    This model was created from the file STS_014.

    72 downloads

       (0 reviews)

    0 comments

    Updated

  2. Free

    Right knee - Muscle model STL file from converted CT scan

    The knee joint is formed by three bones: the femur, the tibia and the patella. the knee joint is the largest synovial joint and provides the flexion and extension movements of the leg as well as relative medial and lateral rotations while in relative flexion.

    The knee joint articulations are two condylar joints between the femur and the tibia as well as a joint between the patella and the femur. Although the fibula is closely related to the knee joint but it doesn't share in articulation.   The knee joint is also formed by some ligaments and cartilage called (menisci) which are best imaged by MRI.   This 3D model was created from the file STS_051   The original CT examination can be reviewed at: The 3D bone model created from this scan can be reviewed at: The 3D skin model created from this scan can be reviewed at: 

    146 downloads

       (0 reviews)

    0 comments

    Updated

  3. Free

    Normal Right Foot and Ankle Muscle Model 3D Printable STL File Converted from CT Scan

    This model is the right foot and ankle muscle rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient unfortunately died 9.5 months after diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing.
     
    The primary motions of the ankle are dorsiflexion, plantarflexion, inversion and eversion. However with the addition of midfoot motion (adduction, and abduction), the foot may supinate (inversion and adduction) or pronate (eversion and abduction). In order to accomplish these motions, muscles outside of the foot (extrinsic) and muscles within the foot (intrinsic) attach throughout the foot, crossing one or more joints.
     
    Laterally, the peroneus brevis and tertius attach on the proximal fifth metatarsal to evert the foot. The peroneus longus courses under the cuboid to attach on the plantar surface of the first metatarsal, acting as the primary plantarflexor of the first ray and, secondarily, the foot. Together, these muscles also assist in stabilizing the ankle for patients with deficient lateral ankle ligaments from chronic sprains. Medially, the posterior tibialis inserts on the plantar aspect of the navicular cuneiforms and metatarsal bases, acting primarily to invert the foot and secondarily to plantarflex the foot.  The flexor hallucis longus inserts on the base of the distal phalanx of the great toe to plantarflex the great toe, and the flexor digitorum inserts on the bases of the distal phalanges of the lesser four toes, acting to plantarflex the toes. The gastrocnemius inserts on the calcaneus as the Achilles tendon and plantarflexes the foot. Anteriorly, the tibialis anterior inserts on the dorsal medial cuneiform and plantar aspect of the first metatarsal base as the primary ankle dorsiflexor and secondary inverter. The Extensor hallucis longus and extensor digitorum longus insert on the dorsal aspect of the base of the distal phalanges to dorsiflex the great toe and lesser toes, respectively.
     
    This model was created from the file STS_023.

    55 downloads

       (0 reviews)

    0 comments

    Updated

  4. Free

    Muscles and tendons of the foot and ankle

    This 3D printable STL file contains a model of the right foot was derived from a real medical CT scan. It shows in detail the musculature, tendons, and ligaments of the foot and ankle. The anatomy is normal, and was derived from the foot of a 60 year old woman.
    This model was created using the democratiz3D free online 3D model creation service.
     
    STS_010 legs

    131 downloads

       (0 reviews)

    0 comments

    Updated

  5. Free

    eu - stl file processed

    eu - stl file processed
    3dmodel, stl, muscle, tigh, testicles, penis,

    21 downloads

       (0 reviews)

    0 comments

    Updated

  6. Free

    Normal Left Foot and Ankle Muscle Model 3D Printable STL File Converted from CT Scan

    This model is the left foot and ankle muscle rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient unfortunately died 9.5 months after diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing.
     
    The primary motions of the ankle are dorsiflexion, plantarflexion, inversion and eversion. However with the addition of midfoot motion (adduction, and abduction), the foot may supinate (inversion and adduction) or pronate (eversion and abduction). In order to accomplish these motions, muscles outside of the foot (extrinsic) and muscles within the foot (intrinsic) attach throughout the foot, crossing one or more joints.
     
    Laterally, the peroneus brevis and tertius attach on the proximal fifth metatarsal to evert the foot. The peroneus longus courses under the cuboid to attach on the plantar surface of the first metatarsal, acting as the primary plantarflexor of the first ray and, secondarily, the foot. Together, these muscles also assist in stabilizing the ankle for patients with deficient lateral ankle ligaments from chronic sprains. Medially, the posterior tibialis inserts on the plantar aspect of the navicular cuneiforms and metatarsal bases, acting primarily to invert the foot and secondarily to plantarflex the foot.  The flexor hallucis longus inserts on the base of the distal phalanx of the great toe to plantarflex the great toe, and the flexor digitorum inserts on the bases of the distal phalanges of the lesser four toes, acting to plantarflex the toes. The gastrocnemius inserts on the calcaneus as the Achilles tendon and plantarflexes the foot. Anteriorly, the tibialis anterior inserts on the dorsal medial cuneiform and plantar aspect of the first metatarsal base as the primary ankle dorsiflexor and secondary inverter. The Extensor hallucis longus and extensor digitorum longus insert on the dorsal aspect of the base of the distal phalanges to dorsiflex the great toe and lesser toes, respectively.
     
    This model was created from the file STS_023.

    33 downloads

       (0 reviews)

    0 comments

    Updated

  7. Free

    Right Leg Muscle Model 3D Printable STL File Converted from CT Scan

    This model is the right leg muscle rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing.
     
    The lower leg is divided into four muscle compartments: the anterior, lateral, superficial posterior, and deep posterior compartments.  The anterior compartment is made from the dorsiflexors, including the tibialis anterior, extensor hallucis longus (EHL), extensor digitorum longus (EDL) and peroneus tertius, which are innervated by the deep peroneal nerve. The lateral compartment includes the peroneus longus and peroneus brevis, which assist in foot eversion and are innervated by the superficial peroneal nerve. The superficial posterior compartment includes the gastrocnemius, soleus, and plantaris, which assist in plantarflexion and are innervated by the tibial nerve.  The deep posterior compartment is made up of the popliteus, flexor hallucis longus (FHL), flexor digitorum longus (FDL), and tibialis posterior, which mostly assist in plantarflexion and are innervated similarly by the tibial nerve.
     
    The primary motions of the ankle are dorsiflexion, plantarflexion, inversion and eversion. However, with the addition of midfoot motion (adduction, and abduction), the foot may supinate (inversion and adduction) or pronate (eversion and abduction). In order to accomplish these motions, muscles outside of the foot (extrinsic) and muscles within the foot (intrinsic) attach throughout the foot, crossing one or more joints.
     
    Laterally, the peroneus brevis and tertius attach on the proximal fifth metatarsal to evert the foot. The peroneus longus courses under the cuboid to attach on the plantar surface of the first metatarsal, acting as the primary plantarflexor of the first ray and, secondarily, the foot. Together, these muscles also assist in stabilizing the ankle for patients with deficient lateral ankle ligaments from chronic sprains. Medially, the posterior tibialis inserts on the plantar aspect of the navicular cuneiforms and metatarsal bases, acting primarily to invert the foot and secondarily to plantarflex the foot.  The flexor hallucis longus inserts on the base of the distal phalanx of the great toe to plantarflex the great toe, and the flexor digitorum inserts on the bases of the distal phalanges of the lesser four toes, acting to plantarflex the toes. The gastrocnemius inserts on the calcaneus as the Achilles tendon and plantarflexes the foot. Anteriorly, the tibialis anterior inserts on the dorsal medial cuneiform and plantar aspect of the first metatarsal base as the primary ankle dorsiflexor and secondary inverter. The Extensor hallucis longus and extensor digitorum longus insert on the dorsal aspect of the base of the distal phalanges to dorsiflex the great toe and lesser toes, respectively.
     
    This model was created from the file STS_022.

    41 downloads

       (0 reviews)

    0 comments

    Updated

  8. Free

    Right Leg Muscle Model 3D Printable STL File Converted from CT Scan

    This is the normal right leg muscle model (including foot) of a 56 year old male with right anterior thigh pleomorphic leiomyosarcoma. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing.
     
    The lower leg is divided into four muscle compartments: the anterior, lateral, superficial posterior, and deep posterior compartments.  The anterior compartment is made from the dorsiflexors, including the tibialis anterior, extensor hallucis longus (EHL), extensor digitorum longus (EDL) and peroneus tertius, which are innervated by the deep peroneal nerve. The lateral compartment includes the peroneus longus and peroneus brevis, which assist in foot eversion and are innervated by the superficial peroneal nerve. The superficial posterior compartment includes the gastrocnemius, soleus, and plantaris, which assist in plantarflexion and are innervated by the tibial nerve.  The deep posterior compartment is made up of the popliteus, flexor hallucis longus (FHL), flexor digitorum longus (FDL), and tibialis posterior, which mostly assist in plantarflexion and are innervated similarly by the tibial nerve.
     
    This file was created from the file STS_014.

    42 downloads

       (0 reviews)

    0 comments

    Updated

  9. Free

    Right Thigh Muscle Model 3D Printable STL File Converted from CT Scan

    This model is the right thigh muscle rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing.
     
    The thigh is divided into three compartments: the anterior, posterior, and adductor. The anterior compartment contains the “quadriceps muscles”, made up of the vastus lateralis, vastus medialis vastus intermedius, and rectus femoris, and the sartorius. These muscles are innervated by the femoral nerve (L3-L4), and act to extend the leg. The Sartorius muscle originates at the ASIS and crosses anterior to the quadriceps muscle to insert on the medial tibia in the pes anserinus. The posterior compartment contains the “hamstrings”, made up of the semitendinosus, semimembranosus, and short and long heads of the biceps femoris. These muscles act to flex the leg. All of these muscles are innervated by the sciatic nerve (tibial division) except for the short head of the biceps femoris, which is innervated by the sciatic nerve (peroneal division). The adductor compartment contains the adductor longus, adductor brevis, adductor magnus, and gracilis, which act to adduct the thigh. These muscles are innervated by the obturator, and the adductor magnus has dual innervation with the sciatic nerve. In addition, the obturator externus (a thigh external rotator) and pectineus muscle (thigh flexor and adductor) are located within this compartment.
     
    This model was created from the file STS_022.

    41 downloads

       (0 reviews)

    0 comments

    Updated

  10. Free

    Right Leg and Foot Normal Anatomy Muscle Model STL File Converted from CT Scan for 3D Printing

    This is the normal right leg muscle model (including foot) of an 82-year-old male. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing.
     
    The lower leg is divided into four muscle compartments: the anterior, lateral, superficial posterior, and deep posterior compartments.  The anterior compartment is made from the dorsiflexors, including the tibialis anterior, extensor hallucis longus (EHL), extensor digitorum longus (EDL) and peroneus tertius, which are innervated by the deep peroneal nerve. The lateral compartment includes the peroneus longus and peroneus brevis, which assist in foot eversion and are innervated by the superficial peroneal nerve. The superficial posterior compartment include the gastrocnemius, soleus, and plantaris, which assist in plantarflexion and are innervated by the tibial nerve.  The deep posterior compartment is made up of the popliteus, flexor hallucis longus (FHL), flexor digitorum longus (FDL), and tibialis posterior, which mostly assist in plantarflexion and are innervated similarly by the tibial nerve.
     
    This file was created from the file STS_013.

    27 downloads

       (0 reviews)

    0 comments

    Updated

  11. Free

    Left Leg Muscle Model 3D Printable STL File Converted from CT Scan

    This is the normal left leg muscle model (including foot) of a 56 year old male with right anterior thigh pleomorphic leiomyosarcoma. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing.
     
    The lower leg is divided into four muscle compartments: the anterior, lateral, superficial posterior, and deep posterior compartments.  The anterior compartment is made from the dorsiflexors, including the tibialis anterior, extensor hallucis longus (EHL), extensor digitorum longus (EDL) and peroneus tertius, which are innervated by the deep peroneal nerve. The lateral compartment includes the peroneus longus and peroneus brevis, which assist in foot eversion and are innervated by the superficial peroneal nerve. The superficial posterior compartment includes the gastrocnemius, soleus, and plantaris, which assist in plantarflexion and are innervated by the tibial nerve.  The deep posterior compartment is made up of the popliteus, flexor hallucis longus (FHL), flexor digitorum longus (FDL), and tibialis posterior, which mostly assist in plantarflexion and are innervated similarly by the tibial nerve.
     
    This file was created from the file STS_014.

    36 downloads

       (0 reviews)

    0 comments

    Updated

  12. Free

    Muscles of the legs

    This highly detailed 3D printable model of the musculature of the legs was derived from the CT scan of a 22 year old female. It shows all major muscle groups.
     
    This model was created with the democratiz3D free online conversion tool. 
     
    STS_004 0

    63 downloads

       (0 reviews)

    0 comments

    Updated

  13. Free

    Muscles and soft tissues of the knee, with synovial sarcoma tumor

    This 3D printable STL model of the muscles and soft tissues of the knee was derived from the CT scan of a 22 year old female. The patient has a synovial sarcoma tumor involving the lateral thigh, in the vastus lateralus muscle near the attachment point at the knee.
     
    This model was created with the democratiz3D free online conversion tool.
     
    STS_004 0

    20 downloads

       (0 reviews)

    0 comments

    Updated

  14. Free

    Right Knee Muscle Model 3D Printable STL File Converted from CT Scan

    This model is the right knee muscle rendering of a 65-year-old male with left thigh myxoid fibrosarcoma. At the time of diagnosis, the patient had metastases to his lungs. The patient therefore underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy and was found to have an intermediate grade lesion at the time of diagnosis. The patient is still living with the metastatic disease at 2.5 years since diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing.
     
    The knee is a hinge joint that does not have true bony stabilization, so it requires soft tissue static and dynamic stabilizers to prevent excess motion through the joint. In addition, the knee goes through a “screw home” mechanism in which the tibia rotates externally and “locks” into extension during the last 15-20 degrees of extension. Multiple structures, therefore, are needed to work in concert to prevent excess strain through this joint during these daily motions.
     
    On the medial aspect of the knee, the static stabilizers consist of the superficial and deep medial collateral ligaments (MCL) and the posterior oblique ligament (POL). The dynamic stabilizers are the semimembranosus, vastus medialis, medial gastrocnemius, and pes tendons (semitendinosus, gracilis, and sartorius). The lateral stabilizers are best known as the posterolateral corner, and consist of the static stabilizers (lateral collateral ligament (LCL), iliotibial band (ITB), arcuate ligament), and dynamic stabilizers (popliteus, biceps femoris, lateral gastrocnemius). Inside the joint, the anterior cruciate ligament provides resistance to anterior tibial translation varus, and internal rotation, whereas the posterior cruciate ligament provides resistance to posterior tibial translation, varus, valgus, and external rotation.
     
    This model was created from the file STS_022.

    17 downloads

       (0 reviews)

    0 comments

    Updated

  15. Free

    Muscles and ligaments of the knee in a 64 year old man

    This 3D printable STL file contains a model of the muscles around the knee of a 64 year old man was derived from a real medical CT scan.
    This model was created using the democratiz3D free online 3D model creation service.
    STS006
     

    43 downloads

       (0 reviews)

    0 comments

    Updated

  16. Free

    Left knee - Muscle model STL file from converted CT scan

    The knee joint is formed by three bones: the femur, the tibia and the patella. the knee joint is the largest synovial joint and provides the flexion and extension movements of the leg as well as relative medial and lateral rotations while in relative flexion.

    The knee joint articulations are two condylar joints between the femur and the tibia as well as a joint between the patella and the femur. Although the fibula is closely related to the knee joint but it doesn't share in articulation.   The knee joint is also formed by some ligaments and cartilage called (menisci) which are best imaged by MRI.   This 3D model was created from the file STS_051   The original CT examination can be reviewed at: The 3D bone model created from this scan can be reviewed at: The 3D skin model created from this scan can be reviewed at: 

    40 downloads

       (0 reviews)

    0 comments

    Updated

  17. Free

    Muscles of the knee

    This 3D printable STL file contains a model of the right knee was derived from a real medical CT scan. It shows in great detail the normal musculature of the knee joint, including the quadriceps and hamstring muscle groups, and calf musculature.
    This model was created using the democratiz3D free online 3D model creation service.
     
    STS_010

    34 downloads

       (0 reviews)

    0 comments

    Updated

  18. Free

    Left foot - Muscle model STL file from converted CT scan

    The foot is a highly developed, biomechanically complex structure that serves to bear the weight of the body.
      The foot can be divided into 3 parts: the hindfoot, the midfoot, and the forefoot. The hindfoot is composed of 2 of the 7 tarsal bones, the talus, and the calcaneus; the midfoot contains the rest of the tarsal bones; and the forefoot contains the metatarsals and the phalanges.   This 3D model was created from the file STS_039   The original CT examination can be reviewed at: The 3D bone model created from this scan can be reviewed at: The 3D skin model created from this scan can be reviewed at: 

    13 downloads

       (0 reviews)

    0 comments

    Updated

  19. Free

    Right Thigh Mixoid Liposarcoma 3D Printable STL File Converted From CT Scan

    This 3D model represents a case of low grade myxoid liposarcoma affecting the right thigh muscle of a 46 years old male. The model shows a comparison of both lower limbs muscle with a notable enlargement / swelling of the right thigh muscles. The tumor is not causing a significant muscular deformity, therefor a cross sectional CT image is attached showing the lesion in axial, coronal and sagittal planes.   Myxoid liposarcoma is the second commonest for of liposarcoma and usually represents an intermediate grade. Liposarcomas in general are mostly seen in extremities and the most common affected muscles are of the thigh.   This 3D model was created from the file STS_044. The source scan can be found here. 

    8 downloads

       (0 reviews)

    0 comments

    Updated

  20. Free

    Left Thigh Muscle Model 3D Printable STL File Converted from CT Scan

    This is the normal left thigh muscle model of a 56 year old male with contralateral anterior thigh pleomorphic leiomyosarcoma. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing.
     
    The thigh is divided into three compartments: the anterior, posterior, and adductor. The anterior compartment contains the “quadriceps muscles”, made up of the vastus lateralis, vastus medialis vastus intermedius, and rectus femoris, and the sartorius. These muscles are innervated by the femoral nerve (L3-L4), and act to extend the leg. The Sartorius muscle originates at the ASIS and crosses anterior to the quadriceps muscle to insert on the medial tibia in the pes anserinus. The posterior compartment contains the “hamstrings”, made up of the semitendinosus, semimembranosus, and short and long heads of the biceps femoris. These muscles act to flex the leg. All of these muscles are innervated by the sciatic nerve (tibial division) except for the short head of the biceps femoris, which is innervated by the sciatic nerve (peroneal division). The adductor compartment contains the adductor longus, adductor brevis, adductor magnus, and gracilis, which act to adduct the thigh. These muscles are innervated by the obturator, and the adductor magnus has dual innervation with the sciatic nerve. In addition, the obturator externus (a thigh external rotator) and pectineus muscle (thigh flexor and adductor) are located within this compartment.
     
    This model was created from the file STS_014.

    20 downloads

       (0 reviews)

    0 comments

    Updated

  21. Free

    Right Anterior Thigh Pleomorphic Leiomyosarcoma Skin Model 3D Printable STL File Converted form CT Scan

    This model is the bilateral thigh skin rendering of a 56 year old male with a pleomorphic leiomyosarcoma of the anterior compartment of the right thigh. The patient underwent neoadjuvant radiotherapy, surgery, and adjuvant chemotherapy treatment and was found to have an intermediate grade lesion at the time of diagnosis.  However, the tumor metastasized to his lungs, and the patient died 2.5 years after diagnosis. This is an STL file created from DICOM images of his CT scan which may be used for 3D printing.
     
    Leiomyosarcomas are aggressive soft tissue malignancies that are thought to arise from the smooth muscle cells lining small blood vessels. Pleomorphism is the pathologic description of cells and nuclei with variability in size, shape and staining, which is characteristic of a malignant neoplasm. Pleomorphic leiomyosarcoma is an aggressive form of leiomyosarcoma, accounting for approximately 10% of these tumors. The mean age of occurrence is 58 years old, with a range from 31-89 years. These usually occur in the extremities, but may also present in the retroperitoneum/abdominal cavity, chest/abdominal wall, and, occasionally, the scalp. On biopsy, the definition of pleomorphic leiomyosarcoma is the presence of pleomorphic cells in at last two-thirds of the cut section and at least one section of positive staining for smooth muscle. Treatment is early wide resection of the primary lesion and neo-adjuvant or adjuvant chemotherapy and radiation. Tumors may metastasize to the lung. A large primary tumor and presence in the retroperitoneal cavity are poor predictive factors, and about 65% of patients succumb to the disease.
     
    This model was created from the file STS_014.

    3 downloads

       (0 reviews)

    0 comments

    Updated

  22. Free

    3Dleg(muscles) - stl file processed

    3Dleg(muscles) - stl file processed

    Have embodi3D 3D print this model for you. Learn More. This file was created with democratiz3D. Automatically create 3D printable models from CT scans. Learn more.
     
    Gluteus medius muscle, Piriformis muscle, Gluteus maximus muscle, Levator ani muscle, Gemellus superior muscle, Obturator internus muscle, Adductor magnus muscle, Iliotibial tract, Gracilis muscle, Vastus lateralis muscle, Biceps femoris muscle, Semitendinosus, biceps femoris muscles, Rectus femoris muscle, Vastus intermedius muscle, Sartorius muscle, Semimembranosus muscle, Popliteus muscle, Gastrocnemius muscle, Tibialis posterior muscle, Tibialis anterior muscle, 3d, model, .stl, lower, limb, extremity, muscles,

    21 downloads

       (0 reviews)

    0 comments

    Updated

  23. Free

    fOOT 3D SCAN - stl file processed

    fOOT 3D SCAN - stl file processed
    3dmodel, foot, muscle, phalanx, metatarsal, stl, lower limb

    24 downloads

       (0 reviews)

    0 comments

    Updated

  24. Free

    rrr - stl file processed

    rrr - stl file processed
    stl, 3dmodel, ankle, knee, muscles, tigh, lower limb

    4 downloads

       (0 reviews)

    0 comments

    Updated

  25. Free

    Instructables 3D model of the leg muscles - stl file processed

    Instructables 3D model of the leg muscles - stl file processed
    Link to tutorial: https://www.instructables.com/How-to-Easily-and-Automatically-Convert-a-CT-Scan-/

    Have embodi3D 3D print this model for you. This file was created with democratiz3D. Automatically create 3D printable models from CT scans.
     
    lower, .stl, 3d, model, printable, muscle, quadriceps, vastus, medialis, lateralis, limb, knee, tibialis, posterior, anterior, semitendinous, semimembranous, fibula, fibularis, gluteus, perineum

    36 downloads

       (0 reviews)

    0 comments

    Updated


×
×
  • Create New...