Jump to content
  • Welcome to embodi3D Downloads! This is the largest and fastest growing library of 3D printable medical models generated from real medical scans on the Internet. A unique scientific resource, most of the material is free. Registered members can download, upload, and sell models. To convert your own medical scans to a 3D model, take a look at democratiz3D, our free and automated conversion service.

Spine and Pelvis

Sign in to follow this  

Files related to 3D printing spine models.

533 files

  1. $20.00

    Acetabular fracture of the pelvis

    Acetabular fracture of the pelvis. CT scan, 2mm slides. Pelvix set, Osirix dicom library.
    link to sketchfab: Acetabular fracture of the pelvis

    0 purchases   28 downloads

       (0 reviews)

    0 comments

    Updated

  2. $1.99

    cervical disks for segmented cervical spine

    Intervertebral disks for segmented cervical spine 3D print

    7 purchases   132 downloads

       (0 reviews)

    0 comments

    Updated

  3. $4.00

    cervical spine segmented

    Individually segmented vertebra for cervical spine, C1 through C7.  Cervical disks are available as a separate file.  Clear silicone sealant works well to assemble print.
     
    Anterior arch of the atlas,  Base of the skull,  Odontoid process,  Posterior arch of the atlas, Mandible, Spinous process,  Body of the axis,  Anterior superior margin of the vertebra,  Transverse process,  Anterior inferior margin of the vertebra,  Superior articular facet,  Inferior articular facet,  Superior vertebral end plate,  Inferior vertebral end plate,  Intervertebral facet joint,  Intervertebral disk space,  Lamina,  Articular pillar,  Spinous process

    13 purchases   69 downloads

       (1 review)

    0 comments

    Updated

  4. $2.00

    DISKS for Segmented lumbar spine

    .STL files for the intervertebral disks of the segmented lumbar spine L1/2 through l5/s1.  Lumbar spine and iliac bones are separate downloads

    0 purchases   0 downloads

       (0 reviews)

    0 comments

    Submitted

  5. $4.99

    Female Pelvis

    This is a 3D printable STL model of the pelvis of a woman derived from a CT scan.
    STS_003. This model was created using the democratiz3D service.

    0 purchases   0 downloads

       (0 reviews)

    0 comments

    Updated

  6. $6.00

    lumbar spine and sacrum

    Segmented lumbar spine and sacrum, young adult.  This includes L1 through L5 vertebral bodies and the sacrum .STL files for the intervertebral disks and pelvis are available as a separate download.  

    2 purchases   12 downloads

       (0 reviews)

    0 comments

    Updated

  7. $9.99

    Lumbar spine compression fracture with severe arthritis STL file

    This high quality STL file of the lumbar spine is confirmed 3D printable. It was taken from a patient with a chronic L2 lumbar spine compression fracture. The abnormal L2 vertebral body has caused severe degenerative change at the L2-3 level, with obliteration of the L2-3 intervertebral disk and severe osteophyte formation. The fracture and collapse of the L2-3 disk causes subluxation of the facet joints at this level, and narrowing of the L2 neural foramen. It is clearly illustrated how degenerative, arthritic change can result in nerve pinching at the neural foramen. This model can be used for scientific and medical education, and shows what compression fractures and degenerative spine disease look like. Also, the model is useful for teaching spinal interventions, such as lumbar punctures, epidural steroid injections, selective nerve root blocks, vertebroplasty, and kyphoplasty. 
     
    The file is in STL file format. 21.6 MB
    221181 vertices, 442558 polygons
    Confirmed printable on Formlabs Form 2 with white resin. 

    0 purchases   0 downloads

       (0 reviews)

    0 comments

    Submitted

  8. $1.99

    lumbar vertebrae

    This is a 3D model of lumbar vertebrae ready for print., spine, bone, stl, 3dmodel, print, column, 

    0 purchases   0 downloads

       (0 reviews)

    0 comments

    Updated

  9. $6.00

    Pelvis and sacrum

    Full size, segmented pelvis and sacrum, young adult female. 

    0 purchases   0 downloads

       (0 reviews)

    0 comments

    Submitted

  10. $15.00

    Pelvis and spine with osteophytes

    Female pelvis and spine with massive osteophytes. CT scan, 0,6mm slides. Sketchfab
     
    anatomy, spine, pelvis, osteophytes, disc hernia, spondiloartrhosis, disc, ribs, hip, head, femur, stl, 3d, model, printable

    0 purchases   0 downloads

       (0 reviews)

    0 comments

    Updated

  11. $2.99

    Thoracic spine with kyphosis (hunchback deformity)

    This 3D printable STL model of the thoracic spine shows notable kyphosis (hunchback deformity) and was derived from a CT scan.
    STS_002. This model was created using the democratiz3D service.

    0 purchases   0 downloads

       (0 reviews)

    0 comments

    Updated

  12. $9.99

    Total spine, cervical, thoracic, and lumbar

    This is a 3D printable STL model of the entire spinal column, including cervical, thoracic, and lumbar regions derived from a CT scan.
    STS_003. This model was created using the democratiz3D service.

    0 purchases   0 downloads

       (0 reviews)

    0 comments

    Updated

  13. Free

    UpperAbdomen5 - stl file processed

    UpperAbdomen5 - stl file processed
    bone, stl, 3dmodel, chest, ribs, stl,

    5 downloads

       (0 reviews)

    0 comments

    Updated

  14. Free

    UpperAbdomen5 - stl file processed

    UpperAbdomen5 - stl file processed
    3dmodel , stl, bone, pelvis, 3dmodel

    0 downloads

       (0 reviews)

    0 comments

    Updated

  15. $3.00

    Vertebra bifida

    Columna vertebral , Superior vertebral end plate, Inferior vertebral end plate, Intervertebral foramen, Spinous process, Transverse process, Intervertebral disk space, Superior articular process, Inferior articular process, body, spinous, process, transverse, bifid, spine, 3d, model, .stl, printable, printing, embodi, ribs, 

    0 purchases   0 downloads

       (0 reviews)

    0 comments

    Updated

Sign in to follow this  
  • File Reviews

  • File Comments

    • Valchanov,   I downloaded the file and took a look. I see right ventricular hypertrophy, a large VSD, pulmonary valve atresia/stenosis and an overriding aorta that is also on the right side. I think this is Tetrology of Fallot. It is a cool scan! Dr. Mike
    • Hello Can you give me some background information about the health condition of the patient? The set is excellent, but there is something really wrong with the anatomy of this heart. I want to model it properly.
    • The whole time I was thinking that I'm doing something wrong, because it's impossible for a TAAA to be that big. This was beyond everything I ever saw for 22 years of medical education and experience. But yes, it's THAT big. I segmented the lumen, I added 2 cm margin around it to create a hollow shell, then I added the media of the aneurysmic sack and all the atherosclerotic plaques for extra realism. There was a part of the sack, which went into one of the perihepatic space, but I removed it, b
    • I think this is the biggest thoracic aneurysm I have ever seen. I am glad the patient survived!
    • The cartilages of the larynx are one of my summer vacation projects. The raw data is from a CT scan and the nasopharynx can't be segmented properly. Eventually, I can segment the soft tissues as a bulk and the cavities as a separated mesh. 
  • Recent Forum Posts

    • Single versus multiple segmentation - Back and forth technique There are many challenging cases, in which the single segmentation is not enough. The paranasal sinuses and the congenital heart defects are notable examples. My usual workflow was to segment whatever I can as good as it's possible, to clean the unnecessary structures and the artefacts, to export the segmentation as stl 3d model and then to "CAD my way around".  This is solid philosophy for simple, uncomplicated models, but for complex structures with a lot of small details and requirement from the client for the highest quality possible, this is just not good enough, especially for a professional anatomist like myself. Then I started to exploit the simple fact, that you're actually able to export the model as stl, to model it with your CAD software and then to reimport it back and convert it into label map again. I called this "back and forth technique". You can model the finest details on your model and then you can continue the segmentation right where you need it, catching even the slightest details of the morphology of the targeted structure. This technique, combined with my expertise, gives me the ability to produce the best possible details on some of the most challenging cases, including nasal cavity, heart valves, brain models etc. etc. To use this technique, just import the stl file, convert it into a label map (for 3D slicer -  segmentation module/ export/import models and label maps).  The main advantages of this technique are: 1. You can combine the segmentation with the most advanced CAD functions of your favorite software. Two highly specialized programs are better than one "Jack of all trades" (cough cough Mimics cough cough) 2. Advanced artefact removing. 3. Advanced small detail segmentation and modelling. 4. Combined with several markers (separate segmentations, several voxels in size) on the nearby anthropometric points, this technique increases the accuracy of the final product significantly. Without points of origin, the geometry of your model will go to hell, if you're not especially careful (yes, I'm talking about the 3D brushes in Slicer). 5. You can easily compare the label map with the 3d model, converted back. Every deviation, produced during the CAD operations will be visible like a big, shining dot, which you can easily see and correct. This is one of the strongest quality control techniques. 6. You can create advanced masks with all the geometrical forms you can possibly imagine, which you can use for advanced detail segmentation. Those masks will be linked with the spatial coordinates of the targeted structures - the stl file preserves the exact coordinates of every voxel, which was segmented. 7. You can go back and forth multiple times, as many as you like. 8. This technique is more powerful than the best AI, developed by now. It combines the best from the digital technologies with the prowess of the human visual cortex (the best video card up to date). The main disadvantages are: 1. It's time consuming. 2. It produces A LOT of junk files. 3. Advanced expertise is needed for this technique. This is not some "prank modelling", but an actual morphological work. A specialized education and practical experience in the human anatomy, pathology and radiology will give you the best results, which this technique can offer.  4. You need highly developed visual cortex for this technique (dominant visual sense). This technique is not for the linguistic, spatial-motor, olphactory etc. types of brains. Recent studies confirms, that a part of the population have genetically determined bigger, more advanced visual cortex (The human connectome project, Prof. David Van Essen, Washington University in Saint Louis). Such individuals become really successful cinematographers, designers, photographers and medical imaging specialists. The same is true for all the other senses, but right now we're talking about visual modality and 3D intellect (I'm sorry, dear linguists, musicians, craftsmen and tasters). It's not a coincidence that I have so many visual artists in my family (which makes me the medical black sheep). But if you don't have this kind of brain, you can still use the technique for quality control and precise mask generation. Just let the treshould module or the AI to do the job for you in the coordinates, in which you want (You should really start using the Segment Editor module in Slicer 3D). 5. You really need to love your work, if you're using this technique. For the usual 3D modelling you don't need so many details in your model and to "CAD your way around" is enough for the task. 6. You should use only stl files. For some reason, the obj format can't preserve the spatial geometry as good as the stl format. Maybe because the stl is just a simple map of vertex coordinates and the obj contains much more sophisticated data. The simple, the better. On the picture - comparison of the semilunar valves, made by treshould segmentation at 250-450 Hounsfield units (in green) and modelled and reimported model (in red). 
    • If the models are for medical purposes - this is the webpage of the lab in my institution. You can check their equipment and find a similar service in your state. I'm also quite interested if anyone on this website is making such models.
    • You want those crowns for a medical purposes or as a prank? Because the quality criteria for the dentures are quite high - even 50 microns deviation can cause unbearable pain for the patient. Usually a special dental 3D scanner is used for the model generation and a SLA or STL printer - for the dentures themself, with an expensive, FDA-approved polymer. There are specialized dental 3d printing labs, including in my institution. I'm definitely out of this league (yet).
    • The heart is possible, but the valves will be a hard call, which depends on the skill of the radiologist and the 3D modeller.  You can segment the cuspids on hand and hope for the best. Smaller slices, better result. The print will be also a hard call, unless you have a Polyjet on hand.
×
×
  • Create New...