Jump to content

Blog Entries

Showing blog entries posted in for the last 365 days.

This stream auto-updates     

  1. Earlier
  2. Devarsh, your article is spot on. MRI is incredibly valuable, but there are huge limitations to 3D printing from it. Usually, I am stuck with doing a lot of manual segmentation, which is extremely time consuming. Thanks for writing this great article!
  3. go to the Dicom browser, select the patient, select Study and click load data bottom left and if you do a savew after that you'll have your nrrd file.
  4. thank you for the tutorial... I have a tibia bone ct scan data ...would you please tell me what changes should i make to create a high quality stl file with the most details on it?
  5. Vascular Training Models Venous Models: IVC Filter Deployment/Retrieval Model: VIVC01000M Iliac Vein Stenosis Extension Model: VIVC01E2SC Gonadal Vein Embolization Extension Model: VGON01000C Femoral Vein Extension Model: VFEM01000C Flexible SVC Extension Model: VSVC01000F Vascular Training Models Arterial Models: Extendable Abdominal Aorta Model: AABD02000C Upper and Lower Leg Extension Model: AALE01000C Abdominal Aortic Aneurysm EVAR Model: AAAA01000C Stand-Alone Abdominal Aorta Model: AABD01000C Description: The flexible SVC and heart advanced IVC filter retrieval model is a large single piece model made of flexible material that accurately simulates the compliance of a vein. The softer material allows the passage of rigid instruments, such as metal biopsy forceps or rigid TIPS access cannulas. As these instruments are passed through the model, the walls deform to accommodate the instruments as they would in real life. This large single piece replaces the top three pieces of the standard IVC filter model. Contact us for model information and prices
    Procedures that this model can teach or practice: Advanced IVC filter retrieval Transjugular intrahepatic portosystemic shunt creation (TIPS) Transjugular liver biopsy Myocardial biopsy Compatibility: Gonadal vein embolization model (# VGON01000C) Iliac vein stenosis extension model (# VICV01E2S) Femoral vein extension model (# VFEM01000C) Required models: This model should be used with the IVC filter deployment/ retrieval model (# VIVC01000M) For questions and pricing contact us. Please include the model name and number with your inquiry: Flexible SVC Extension Model (#VSVC01000F)
  6. Vascular Training Models Venous Models: IVC Filter Deployment/Retrieval Model: VIVC01000M Iliac Vein Stenosis Extension Model: VIVC01E2SC Gonadal Vein Embolization Extension Model: VGON01000C Femoral Vein Extension Model: VFEM01000C Flexible SVC Extension Model: VSVC01000F Vascular Training Models Arterial Models: Extendable Abdominal Aorta Model: AABD02000C Upper and Lower Leg Extension Model: AALE01000C Abdominal Aortic Aneurysm EVAR Model: AAAA01000C Stand-Alone Abdominal Aorta Model: AABD01000C Description: The femoral vein extension model extends the standard IVC venous model to the tibial veins below the knee. With a left iliac vein adapter part, the femoral and popliteal vein can be attached to the IVC model, giving a complete venous system from the jugular vein in the neck to the tibial veins below the left knee. This venous model is perfect for demonstrating thrombolysis and thrombectomy devices, and for simulating lower extremity venous intervention from the popliteal approach. Sheath access points are present at the common femoral vein and distal popliteal vein segments. Contact us for model information and prices
    Procedures that this model can teach or practice: DVT thrombectomy DVT thrombolysis venous angioplasty and stenting IVC filter placement (popliteal access) Compatibility: Iliac vein stenosis extension model (# VIVC01E2SC) Gonadal vein embolization extension model (# VGON01000C) Flexible SVC extension model(# VSVC01000F) Required models: This model should be used with the IVC Filter Deployment and Retrieval Model (# VIVC01000M) For questions and pricing contact us. Please include the model name and number with your inquiry: Femoral Vein Extension Model (# VFEM01000C)
  7. Vascular Training Models Venous Models: IVC Filter Deployment/Retrieval Model: VIVC01000M Iliac Vein Stenosis Extension Model: VIVC01E2SC Gonadal Vein Embolization Extension Model: VGON01000C Femoral Vein Extension Model: VFEM01000C Flexible SVC Extension Model: VSVC01000F Vascular Training Models Arterial Models: Extendable Abdominal Aorta Model: AABD02000C Upper and Lower Leg Extension Model: AALE01000C Abdominal Aortic Aneurysm EVAR Model: AAAA01000C Stand-Alone Abdominal Aorta Model: AABD01000C Embodi3D has created a line of super-accurate 3D printed vascular models for physician and medical professional advanced training. Created by a board-certified physician who performs vascular procedures daily, these models were created for maximum procedural realism while being more practical and less expensive than conventional animal labs or silicone tube models. Physician specialists who utilize these models include vascular surgeons, cardiologists, and radiologists. Numerous medical device companies use these models to teach and demonstrate their devices under realistic circumstances. Hospitals and medical schools use them to teach residents, fellows and medical students how to perform vascular procedures. Venous and arterial models are available. Contact us for model information and prices Venous Models We offer a base model that is designed for IVC filter deployment and retrieval, as well as four modules that are compatible with this base model. Simply swap out the relevant components. Specifications for each of the models are covered on the individual product pages which you can access by clicking on the links below. IVC Filter Deployment/Retrieval Model Iliac Vein Stenosis Extension Model Gonadal Vein Embolization Extension Model Femoral Vein Extension Model Flexible SVC Extension Model Arterial Models Our arterial model product offering includes an Abdominal Aortic Aneurysm EVAR model, and two abdominal aorta models, one of which stands alone, and one of which is extendable and compatible with the Upper and Lower Leg Extension model. Specifications for each of the models are covered on the individual product pages which you can access by clicking on the links below. Extendable Abdominal Aorta Model Upper and Lower Leg Extension Model Abdominal Aortic Aneurysm EVAR Model Stand-Alone Abdominal Aorta Model
  8. Vascular Training Models Venous Models: IVC Filter Deployment/Retrieval Model: VIVC01000M Iliac Vein Stenosis Extension Model: VIVC01E2SC Gonadal Vein Embolization Extension Model: VGON01000C Femoral Vein Extension Model: VFEM01000C Flexible SVC Extension Model: VSVC01000F Vascular Training Models Arterial Models: Extendable Abdominal Aorta Model: AABD02000C Upper and Lower Leg Extension Model: AALE01000C Abdominal Aortic Aneurysm EVAR Model: AAAA01000C Stand-Alone Abdominal Aorta Model: AABD01000C Description: The original abdominal aorta model has detailed arterial anatomy generated from a real CT scan, so the exact vessel shapes, diameters, and angles are all real. Numerous detailed vessel branches are included for maximum realism and for practicing extremely fine catheterization. For example, the right, middle, and left hepatic arteries are included, which are only accessible after four levels of branching (Aorta -> Celiac artery -> Common hepatic artery -> Proper hepatic artery -> Right, middle, and left hepatic arteries). Contact us for model information and prices Vascular sheath attachment points are present at the right and left common femoral arteries, as they would be during a real procedure. This provides an unparalleled level of realism for training in an in vitro model. It is a revolutionary training tool for interventional radiologists, cardiologists, and vascular surgeons. It is commonly used at professional training sessions, trade shows and conventions, in-hospital training sessions, and at medical schools for teaching residents and fellows. Medical device companies use the model to demonstrate and teach the use of their micro catheter, wire, and embolization products to physicians. This model is not compatible with other embodi3D models at this time. The model assembles and disassembles in less than 20 seconds. It comes with its own durable and customized carrying case for safe and easy transport.
    Aneurysms for embolization: Splenic artery, proximal, 25 mm berry aneurysm, 10 mm neck Splenic artery, distal, 20 mm berry aneurysm, 7.5 mm neck Right renal, 10 mm berry aneurysm, 8 mm neck Left renal, inferior, 5 mm berry aneurysm, 3.5 mm neck Left iliac artery, fusiform aneurysm, 33 mm x 23 mm Arterial Stenoses: Left renal, accessory branch, stenosis, 2mm Arteries Included: Arteries Included: Abdominal aorta Common iliac arteries Internal and external iliac arteries Common femoral arteries Celiac artery and branches Splenic artery Left gastric artery Common hepatic artery, right hepatic artery Gastroduodenal artery Superior mesenteric artery and branches Inferior mesenteric artery and branches Renal arteries Procedures that this model can teach or practice: Aneurysm embolization General Stent assisted Balloon assisted Vessel embolization Splenic artery Gastroduodenal artery (Y-90 mapping and upper GI bleeding) Yttrium-90 radioembolization mapping Yttrium-90 radioembolization treatment Hepatic chemoembolization Angiography for G.I. bleeding Renal artery angiography Renal artery stenting Pelvic angiography and embolization for trauma Internal iliac artery embolization Internal iliac artery stent-grafting Abdominal aorta stent-grafting Compatibility: None For questions and pricing contact us. Please include the model name and number with your inquiry: Stand Alone Abdominal Aorta Model (# AABD01000C)
  9. Vascular Training Models Venous Models: IVC Filter Deployment/Retrieval Model: VIVC01000M Iliac Vein Stenosis Extension Model: VIVC01E2SC Gonadal Vein Embolization Extension Model: VGON01000C Femoral Vein Extension Model: VFEM01000C Flexible SVC Extension Model: VSVC01000F Vascular Training Models Arterial Models: Extendable Abdominal Aorta Model: AABD02000C Upper and Lower Leg Extension Model: AALE01000C Abdominal Aortic Aneurysm EVAR Model: AAAA01000C Stand-Alone Abdominal Aorta Model: AABD01000C Description: The abdominal aortic aneurysm (AAA) model contains a large fusiform abdominal aortic aneurysm for placement of aortic stent grafts (EVAR). The aneurysm measures 59 mm in diameter at its widest point. 26 French common femoral artery access points are present bilaterally to facilitate introduction of large devices. A strategically positioned magnetic connector in the middle of the aneurysm body allows the model to be disassembled for easy removal of deployed stent-grafts. Contact us for model information and prices
    Procedures that this model can teach or practice: Endovascular aneurysm repair (EVAR) Compatibility: Upper and Lower Leg Extension Model(# AALE01000C) Thoracic aorta model (planned) Thoracic aortic aneurysm model (planned) For questions and pricing contact us. Please include the model name and number with your inquiry: Abdominal Aortic Aneurysm EVAR Model (#AAAA01000C)
  10. Vascular Training Models Venous Models: IVC Filter Deployment/Retrieval Model: VIVC01000M Iliac Vein Stenosis Extension Model: VIVC01E2SC Gonadal Vein Embolization Extension Model: VGON01000C Femoral Vein Extension Model: VFEM01000C Flexible SVC Extension Model: VSVC01000F Vascular Training Models Arterial Models: Extendable Abdominal Aorta Model: AABD02000C Upper and Lower Leg Extension Model: AALE01000C Abdominal Aortic Aneurysm EVAR Model: AAAA01000C Stand-Alone Abdominal Aorta Model: AABD01000C Description: The upper and lower leg extension model contains all the major arterial structures of the left leg from the hip to the level of the ankle. When connected to the extendable abdominal aorta model (Model # AABD02000C) or the AAA EVAR model (Model #AAAA01000C), complete arterial anatomy from the diaphragm to the ankles can be simulated. An SFA stenosis is incorporated in the model to allow stent placement. Detailed tibial arteries are included which can be catheterized. The model is ideal for demonstrating lower extremity arterial interventions. Contact us for model information and prices
    Procedures that this model can teach or practice: Superficial femoral artery stenting Catheter atherectomy Superficial femoral artery Tibial arteries Balloon angioplasty (low-pressure) Lower extremity angiography Compatibility: Extendable Abdominal Aorta Model (# AABD02000C) Abdominal Aortic Aneurysm EVAR Model (# AAAA01000C) For questions and pricing contact us. Please include the model name and number with your inquiry: Upper and Lower Leg Extension Model (#AALE01000C)
  11. Vascular Training Models Venous Models: IVC Filter Deployment/Retrieval Model: VIVC01000M Iliac Vein Stenosis Extension Model: VIVC01E2SC Gonadal Vein Embolization Extension Model: VGON01000C Femoral Vein Extension Model: VFEM01000C Flexible SVC Extension Model: VSVC01000F Vascular Training Models Arterial Models: Extendable Abdominal Aorta Model: AABD02000C Upper and Lower Leg Extension Model: AALE01000C Abdominal Aortic Aneurysm EVAR Model: AAAA01000C Stand-Alone Abdominal Aorta Model: AABD01000C Description: The extendable abdominal aorta model is an enhanced version of the older standalone abdominal aorta model (AABD01000C). In addition to a variety of improvements, it has thicker walls for enhanced durability and new standardized magnetic attachment points that allow it to connect to other embodi3D arterial models. Like its predecessor, it is very adaptable and allows numerous arterial interventions in the abdomen and pelvis to be performed. The detailed arterial anatomy was generated from a real CT scan, so the exact vessel shapes, diameters, and angles are all real. Numerous detailed mesenteric branches are included for maximum realism and for practicing extremely fine catheterization. Contact us for model information and prices Vascular sheath attachment points are present at the right and left common femoral arteries, allowing sheath insertion at these points as in a real procedure. This provides an unparalleled level of realism for training in an in vitro model. It is a revolutionary training tool for interventional radiologists, cardiologists, and vascular surgeons. It is commonly used at professional training sessions, trade shows and conventions, in-hospital training sessions, and at medical schools for teaching residents and fellows. Medical device companies use the model to demonstrate and teach the use of their micro catheter, wire, embolization and stent products to physicians. The model assembles and disassembles in less than 20 seconds. It comes with its own durable and customized carrying case for safe and easy transport.
    Aneurysms for embolization: Splenic artery, proximal, fusiform aneurysm 20 mm diameter x 40 mm length Splenic artery, distal, berry aneurysm, 20 mm diameter, 5 mm neck Right renal, berry aneurysm, 10 mm diameter, 4 mm neck Left internal iliac (hypogastric) artery, fusiform aneurysm, 25 mm diameter x 40 mm length Stenoses for stenting: Renal artery, left, 3 mm at origin Superior mesenteric artery, 3mm at origin Arteries Included: Abdominal aorta Common iliac arteries Internal and external iliac arteries Common femoral arteries Celiac artery and branches Splenic artery Left gastric artery Common hepatic artery, right hepatic artery Gastroduodenal artery Superior mesenteric artery and branches Inferior mesenteric artery and branches Renal arteries Procedures that this model can teach or practice: Aneurysm embolization General Stent assisted Balloon assisted Vessel embolization Splenic artery Gastroduodenal artery (Y-90 mapping and upper GI bleeding) Yttrium-90 radioembolization mapping Yttrium-90 radioembolization treatment Hepatic chemoembolization Angiography for G.I. bleeding Renal artery angiography Renal artery stenting Superior mesenteric artery stenting Pelvic angiography and embolization for trauma Internal iliac (hypogastric) artery embolization Internal iliac artery stent-grafting Abdominal aorta stent-grafting Compatibility: Upper and Lower Leg Extension Model (Model #AALE01000C) Thoracic aorta model (planned) Thoracic aortic aneurysm model (planned) For questions and pricing contact us. Please include the model name and number with your inquiry: Extendable Abdominal Aorta Model (# AABD02000C)
  12. Vascular Training Models Venous Models: IVC Filter Deployment/Retrieval Model: VIVC01000M Iliac Vein Stenosis Extension Model: VIVC01E2SC Gonadal Vein Embolization Extension Model: VGON01000C Femoral Vein Extension Model: VFEM01000C Flexible SVC Extension Model: VSVC01000F Vascular Training Models Arterial Models: Extendable Abdominal Aorta Model: AABD02000C Upper and Lower Leg Extension Model: AALE01000C Abdominal Aortic Aneurysm EVAR Model: AAAA01000C Stand-Alone Abdominal Aorta Model: AABD01000C Description: The gonadal vein embolization model is a two-part model that is compatible with the standard IVC filter deployment/ retrieval model. It consists of a modified IVC segment that snaps into place in the IVC position, and a distal gonadal vein segment. The pathologically dilated gonadal vein is from a real patient with severe pelvic congestion syndrome and consists of a dilated left gonadal vein that measures 11 mm in diameter. The abnormal vein can be accessed from the femoral or jugular approach and is perfect for deploying coils, occlusion devices, or foam. Once deployed the embolization devices can be easily removed. Contact us for model information and prices
    Procedures that this model can teach or practice: Gonadal vein embolization Renal vein sampling Adrenal vein sampling Compatibility: Iliac vein stenosis extension model (# VIVC01E2SC) Femoral vein extension model (# VFEM01000C) Flexible SVC extension model (# VSVC01000F) Required models: This model should be used with the IVC Filter Deployment and Retrieval Model (# VIVC01000M) For questions and pricing contact us. Please include the model name and number with your inquiry: Gonadal Vein Embolization Extension Model (# VGON01000C)
  13. Vascular Training Models Venous Models: IVC Filter Deployment/Retrieval Model: VIVC01000M Iliac Vein Stenosis Extension Model: VIVC01E2SC Gonadal Vein Embolization Extension Model: VGON01000C Femoral Vein Extension Model: VFEM01000C Flexible SVC Extension Model: VSVC01000F Vascular Training Models Arterial Models: Extendable Abdominal Aorta Model: AABD02000C Upper and Lower Leg Extension Model: AALE01000C Abdominal Aortic Aneurysm EVAR Model: AAAA01000C Stand-Alone Abdominal Aorta Model: AABD01000C Description: The iliac vein stenosis model is a single piece that replaces Part E (common iliac veins) in the IVC filter model. This model contains a high grade stenosis in the proximal left common iliac vein, the classic position of the so-called May-Thurner stenosis. In May-Thurner syndrome, chronic compression and scarring of the proximal left common iliac vein, is caused by the crossing right common iliac artery. This results in stenosis of the left common iliac vein, slow blood flow, and eventually clotting and formation of deep vein thrombosis (DVT). After the DVT is cleared with anticoagulation or thrombectomy/thrombolysis, the iliac vein stenosis must be treated with venous stenting. Contact us for model information and prices This model has a 4 mm thick, 9 mm wide stenosis at the crossing point between the left common iliac vein and the right common iliac artery. It is perfect for practicing venous stenting and thrombectomy/ thrombolysis.
    Procedures that this model can teach or practice: venous stenting venous thrombectomy venous thrombolysis venous catheterization Compatibility: Gonadal vein embolization extension model (# VGON01000C) Femoral vein extension model (# VFEM01000C) Flexible SVC extension model (# VSVC01000F) Required models: This model should be used with the IVC filter deployment/ retrieval model (# VIVC01000M) For questions and pricing contact us. Please include the model name and number with your inquiry: Iliac Vein Stenosis Extension model (# VIVC01E2SC)
  14. Vascular Training Models Venous Models: IVC Filter Deployment/Retrieval Model: VIVC01000M Iliac Vein Stenosis Extension Model: VIVC01E2SC Gonadal Vein Embolization Extension Model: VGON01000C Femoral Vein Extension Model: VFEM01000C Flexible SVC Extension Model: VSVC01000F Vascular Training Models Arterial Models: Extendable Abdominal Aorta Model: AABD02000C Upper and Lower Leg Extension Model: AALE01000C Abdominal Aortic Aneurysm EVAR Model: AAAA01000C Stand-Alone Abdominal Aorta Model: AABD01000C Description: The IVC filter deployment/retrieval medical training model includes all the major venous structures in the human torso from the right jugular vein of the neck to the right and left common femoral veins at the level of the hips. The model allows for the education and training in a variety of venous and IVC filter related procedures. The model was created from a real CT scan so the vessel positions, diameters, and angles are all real. Entry points are present at the right jugular vein and brachiocephalic vein for upper body access, and the bilateral common femoral veins for lower body access. Attachments are present to make placement of a real vascular sheath easy. The model can be used to illustrate specific devices for the procedures listed and is used by medical device companies to demonstrate and teach the use of their products. The IVC model comes in a rugged and portable carrying case and is easily transportable. It assembles and disassembles in less than 20 seconds. A variety of extensions are available to expand the number of procedures that can be simulated. Contact us for model information and prices
    Procedures that this model can teach or practice: IVC filter placement, jugular or femoral approach Common iliac filter placement, jugular or femoral approach IVC filter retrieval Venous stenting IVC and iliac vein thrombectomy or thrombolysis Venous embolization Hepatic vein cannulation Compatibility: Iliac vein stenosis extension model (# VIVC01E2SC) Gonadal vein embolization extension model (# VGON01000C) Femoral vein extension model (# VFEM01000C) Flexible SVC extension model (# VSVC01000F) For questions and pricing contact us. Please include the model name and number with your inquiry: IVC Filter Deployment and Retrieval model (# VIVC01000M)
  15. Great tutorial, very complete and well thought out. Do you prefer 3Dslicer to Horos? Are there advantages or quality differences worth mentioning? Will the Democtatiz3D app offer vasculature as an operation in the future?
  16. This tutorial is based on course I taught at the 2018 RSNA meeting in Chicago, Illinois. It is shared here free to the public. In this tutorial, we walk though how to convert a CT scan of the face into a 3D printable file, ready to be sent to a 3D printer. The patient had a gunshot wound to the face. We use only free or open-source software and services for this tutorial. There are two parts to this tutorial: Part 1: How to use free desktop software to create your model Part 2: Use embodi3D's free democratiz3D service to automatically create your model Key Takeaway from this Tutorial: You can make high quality 3D printable models from medical imaging scans using FREE software and services, and it is surprisingly EASY. A note on the FDA (for USA people): There is a lot of confusion about whether expensive, FDA-approved software must be used for medically-related 3D printing in the United States. The FDA recently clarified its stance on the issue.* If you are not using these models for patient-care purposes, this does not concern you. If you have questions please see the FDA website. If you are a DOCTOR, you can use whatever software you think is appropriate for your circumstances under your practice of medicine. If you are a COMPANY, selling 3D printed models for diagnostic use, you need FDA-approved software. If you are designing implants or surgical cutting guides, those are medical devices. Seek FDA feedback. *Kiarashi, N. FDA Current Practices and Regulations, FDA/CDRH-RSNA SIG Meeting on 3D Printed Patient- Specific Anatomic Models. Available at https://www.fda.gov/downloads/MedicalDevices/NewsEvents/WorkshopsConferences/UCM575723.pdf Accessed 11/1/2017. Part 1: Using Desktop software 3D Slicer and Meshmixer Step 1: Download the scan file and required software To start, download the starting CT scan file at the link below. Also, install 3D Slicer (slicer.org) and Meshmixer (meshmixer.com). Step 2: Open 3D Slicer Open Slicer. Drag and drop the scan file gunshot to face.nrrd onto the slicer window. The scan should open in a 4 panel view as shown below in Figure 1. Figure 1: The 4 up view. If your view does not look like this, you can set the 4 up view to display by clicking Four-Up from the View menu, as shown in Figure 2 Figure 2: Choosing the four-up view Step 3: Learning to control the interface Slicer has basic interface controls. Try them out and become accustomed to how the interface works. Note how the patient has injuries from gunshot wound to the face. Left mouse button – Window/Level Right mouse button – Zoom Scroll wheel – Scroll through stack Middle mouse button -- Pan Step 4: Blur the image The CT scan was created using a bone reconstruction kernel. Basically this is an image-enhancement algorithm that makes edges more prominent, which makes detection of fractures easier to see by the human eye. While making fracture detection easier, this algorithm does unnaturally alter the image and makes it appear more "speckled" Figure 3: Noisy, "speckled" appearance of the scan on close up view To fix this issue, we will slightly blur the image. Select Gaussian Blur Image Filter as shown below in Figure 4 Figure 4: Choosing the Gaussian Blur Image Filter Set up the Gaussian Blur parameters. Set Sigma = 1.0. Set the input volume to be Gunshot to face. Create a new output volume called "Gaussian volume" as shown in Figure 5. Figure 5: Setting up the Gaussian parameters When ready, click Apply, as shown in Figure 6. You will notice that the scan becomes slightly blurred. Figure 6: Click Apply to start the Gaussian Blur Image filter. Step 5: Create a 3D model using Grayscale Model Maker Open the Grayscale Model Maker Module as shown below in Figure 7. Figure 7: Opening the Grayscale Model Maker Set up the Grayscale Model Maker parameters. Select the Gaussian volume as the input volume, as shown in Figure 8. Figure 8: Choosing the input volume in Grayscale Model Maker Next, set the output geometry to be a new model called "gunshot model." Set the other parameters: Threshold = 200, smooth 15, Decimate 0.5, Split normals unchecked as shown in Figure 9. Figure 9: Grayscale Model maker parameters When done, click Apply. A new model should be created and will be shown in the upper right hand panel, as shown in Figure 10. Figure 10: The new model Step 6: Save the model as an STL file To start saving the model, click the save button in the upper left of the Slicer window as shown in Figure 11. Figure 11: The save button Be sure that only the 3D model, gunshot model.vtk is selected. Uncheck everything else, as shown in Figure 12. Figure 12: The Save dialog. Check the vtk file Make sure the format of the 3D model is STL as shown in Figure 13. Specify the folder to save into, as shown in Figure 14. Figure 13: Specify the file type Figure 14: Specify the folder to save into within the Save dialog. Step 7: Open the file in Meshmixer for cleanup Open Meshmixer. Drag and drop the newly created STL file on the meshmixer window. The file will open and the model will be displayed as in Figure 15. Figure 15: open the STL file in Meshmixer Get accustomed to the Meshmixer interface as shown in Figure 16. A 3 button mouse is very helpful. Figure 16: Controlling the Meshmixer user interface Choose the Select tool. In is the arrow button along the left of the window. Figure 17: The select tool Click on a portion of the model. The selected portion will turn orange, as shown in Figure 18. Figure 18: Selected areas turn orange. Expand the small selected area to all mesh connected to it. Use Select->Modify->Expand to Connected, or hit the E key. The entire model should turn orange. See Figure 19. Figure 19: Expanding the selection to all connected mesh. Next, Invert the selection so that only disconneced, unwanted mesh is selected. Do this with Select->Modify->Invert, or hit the I key as shown in Figure 20. Figure 20: Inverting the selection At this point, only the unwanted, disconnected mesh should be selected in orange. Delete the unwanted mesh using Select->Edit->Discard, or use the X or DELETE key as shown in Figure 21. At this point, only the desired mesh should remain. Figure 21: Deleting unwanted mesh. Step 8: Run the Inspector tool The Inspector tool will automatically fix most errors in the model mesh. To open it, choose Analysis->Inspector as shown in Figure 22. Figure 22: The Inspector tool The Inspector will identify all of the errors in the mesh. To automatically correct these mesh errors, click Auto Repair All as shown in Figure 23. Figure 23: Auto Repairing using Inspector The Inspector will usually fix all or most errors. In this case however, there is a large hole at the edge of the model where the border of the scan zone was. The Inspector doesn't know how to close it. This is shown in Figure 24. Figure 24: The inspect could not fix 1 mesh error Step 9: Close the remaining hole with manual bridges Using the select tool, select a zone of mesh near the open edge. The Select tool is opened with the arrow button along the left. Choose a brush size -- 40 is good -- as shown in Figure 25. Figure 25: Choosing the select tool The mesh should turn orange when selected, as shown in Figure 26. Figure 26: Selected mesh turns orange. Next, rotate the model and select a zone of mesh opposite the edge from the first selected zone, as shown in Figure 27. Figure 27: Selecting mesh opposite the defect. Once both edges are selected, create a bridge of mesh spanning the two selected areas using the Bridge operation: Select->Edit->Bridge, or CTRL-B, as shown in Figure 28. Figure 28: The bridge tool There should now be a bridge of orange mesh spanning the gap. Click Accept, as shown in Figure 29. Figure 29: The new bridge. Be sure to click Accept. Next, repeat the bridge on the opposite side of the skull. Be sure to deselect the previously selected mesh before working on the opposite side, as shown in Figure 30. Figure 30: Creating a second bridge on the opposite side. Step 10: Rerun the Inspector Rerun the Inspector tool, as shown in Figure 31. Now with the bridges to "help" Meshmixer to know how to fill in the hole, it should succeed. If it fails, create more bridges and try again. Figure 31: Rerun the Inspector tool Next, export your file to STL. ' Figure 32: Export to STL Step 11: 3D print your file! Your STL file is now ready to be sent to the 3D printer of your choice. Figure 33 shows the model after printing. Figure 33: The final print Part 2: Using the democratiz3D service on embodi3d.com democratiz3D automatically converts scans to 3D printable models. It automates the mesh cleanup process and saves time. The service is free for general bone model creation. Step 1: Register Register for a free embodi3D account. The process takes only a minute. You need an account for your processed files to be saved to. Step 2: Upload the NRRD source scan to democratiz3D. From anywhere in the site, click democratiz3D-> Launch App Figure 34: Launching the democratiz3D app. Fill out basic information about your file. That information will be copied to your generated STL file, as shown in Figure 35. Figure 35: Entering basic file information Make sure democratiz3D processing is on. Choose an operation to convert your model. Set threshold to 200, as shown in Figure 36. Figure 36: Operation, threshold, and quality parameters. Click Submit! In 10 to 15 minutes your model should be done. You will receive an email notification. The completed model file will be saved under your account. Download the file and send it to your printer of choice! Figure 37; The final democratiz3D file, ready for download. That's it! I hope this tutorial was helpful to you. If you liked it, please rate it positively. If you want to learn more about democratiz3D, Meshmixer, or Slicer, please see our tutorials page. It has a lot of wonderful resources. Happy 3D printing!
  17. I decided to give my Prusa MK3 printer a real challenge, so I cut my best skull model, I added some slots for neodymium magnets and I started to print the parts. I'm done with the half of them and I'll update my post when I'm done.
  18. Here is another tutorial on hollowing meshes, specifically head meshes to obtain a face shell, but I use this method to hollow out bones as well. Dr. Mike recently posted a great video tutorial on hollowing a head using Meshmixer: https://www.embodi3d.com/blogs/entry/359-how-to-create-a-hollow-shell-from-a-medical-stl-file-using-meshmixer/. I tend to go back and forth between Meshmixer and Meshlab for different functions to prep a print, but I like to use Meshlab for hollowing because it's quick and you can easily control how much "external" surface is selected, which is especially handy for models that have highly complex internal structures. Note that this workflow is also useful if you simply want a 3D model (for viewing/interacting in software, Sketchfab) of a smaller file size where you don't need the internal structures and/or you don't want to decimate the model to achieve a smaller file size. Here are the steps to hollow a head model in Meshlab. I will post screeshots below which you can also find in the Gallery, https://www.embodi3d.com/gallery/album/73-hollowing-skin-model-with-meshlab/. Step 1: Import a model into Meshlab. Go to Filters --> Color Creation and Processing --> Ambient Occlusion per Vertex. When the new box opens, check the box to select "Use GPU Acceleration" and click "Apply." The default settings are fine for a first step. Once you become comfortable with the workflow, you can play around with applying the light from different axes: "Lighting Direction" and "Directional Bias". Step 2: You will notice that your model is now colorized from light to dark, with "deeper" areas shaded darker. On the main toolbar, select the "transparent wireframe" view. You can now see the internal structures that are shaded completely black. Step 3: We can now use the shading values to select the areas we want to remove. Go to Filters --> Selection --> Select Faces by Vertex Quality. The shading values are stored in the Vertex Quality field of your 3D model, with values from 0 (black) to 1 (white), so we can use these values to select the dark (internal or deep) areas we want to remove. Step 4: When the Selection box opens up, slide the "Min Quality" value all the way to 0 (to the left). Check the "Preview" box so that you can see which areas are selected in red. Adjust the "Max Quality" slider left and right until you see that no external surfaces are selected in red. In the image below, you can see that the bottom edges of the eyelids are still red and some skin below the nostrils is also red. When you find a good value, click "Apply" and Close. **Depending on the model, it may be difficult to adjust the Max slider to a value that doesn't include parts of the eyelids or nose, but I will explain in Step 6 how you can recover these features. Instead of deleting the selection in Step 5, skip to Step 6. Step 5: Once you are happy with your selection from Step 4, you can delete everything selected in red by clicking the button shown in the image below. You can see that the model is now hollow, although there may be some disconnected pieces which we will remove in multiple cleaning steps. Step 6: If you think you may have selected some external features in Step 4 that you don't want deleted, instead of deleting (Step 5), you can move the selected (red) areas to another layer. Sometimes with overhanging eyelids or very deeply set eyes, these areas might have the same shading values as some internal structures and can't be excluded from the red. Go to Filters --> Mesh Layer --> Move selected faces to another layer (if your layer dialog is already open, you can right-click on the model name to access the Mesh Layer menu as well). The layer dialog will open up on the right and you will see the name of your original model as well as the new layer. Use the eye icons to toggle visibility. The Meshlab selection tools can be used to select the areas from the red you want to keep, then move them to another layer. Right-clicking on a mesh name will open the Mesh Layer menu, from which you can "Flatten Visible Layers"--the layers you want to keep can be kept visible and merged into a new mesh. Step 7: This image shows the view from the bottom. The head is empty except for that big flat piece at the top of the head. Step 8: As an initial cleaning step to remove small pieces, go to Filters --> Cleaning and Repairing --> Remove Isolated pieces (wrt Diameter). The default size works well, but you can adjust it up to 40% or so to remove larger pieces. This is a deletion function, so the floating pieces will be removed and gone forever! Try to not to adjust the size too high--we'll remove large pieces in step 9. Step 9: Step 8 will usually not remove large pieces, especially if you're being cautious and only remove small pieces. To remove larger pieces, go to Filters --> Mesh Layer --> Split in Connected Components. The pieces will drop into separate layers in the layer dialog box on the right, and they will be named CC 0, CC 1, etc. You don't want to apply this filter until you've removed small pieces, or you might end up crashing the program because there are too many pieces separating out! As mentioned above, the Mesh Layer menu can also be accessed by right-clicking on the mesh name in the right-hand layer dialog box. Step 10: The largest layer is usually CC 0. Toggle visibility to figure out which layer is the one you want. Left-click on it to highlight it in yellow and then export using File --> Export Mesh as... I prefer to fill holes (Inspector) and create internal walls (Extrude or Offset) in Meshmixer, so you can now import the hollowed model to Meshmixer to fix it up for printing if needed. You can also use the plane cut tool in Meshmixer to remove the flattened edge at the top of the skin model, or apply Ambient Occlusion again in only the z-direction (see Step 1--"Lighting Direction"). This can be an interative process depending on the complexity of the model you're trying to hollow, but it can save on printing time as well as $$ if you're only interested in the external surface. Play around with lighting directions to select the surfaces you want and as always, SAVE meshes along the way in case the program crashes or you make a mistake!
  19. Top Orbital and Skull 3D Model STL Files on embodi3D® In our day-to-day lives, we rely on vision more than any of the other four senses, so it only makes sense that human anatomy has adapted to include several features which keep our eyes safe: tear ducts, eyelids, and of course the orbital bone. The orbit (also known as the "eye socket") provides a rigid form of support and protection for some of the most sensitive parts of the eye including the central retinal artery, maeula, retina, choroid, and sclera. The orbit has such complex anatomical features that modeling can prove difficult, and in many instances, the finer features of the orbital bone have been simply been averaged out. The orbital structure isn't one bone, but seven: the frontal, lacrimal, ethmoid, zygomatic, maxillary, and palatine, and sphenoid bones. Can you think of any part of the human body where seven bones converge to fulfill a singular purpose? In recognition of this phenomenal feature of the human anatomy (and one of the most recognizable parts of the human skull), this week's embodi3D® Top Uploads articles, we are featuring several standout uploads — all of which can be used to create an orbital and skull 3D model. As detailed in the scholarly article "Clinical application of three-dimensional printing technology in craniofacial plastic surgery" 3D printing techniques are being used in craniofacial surgeries and especially in reconstruction procedures the require complex modeling. Using the latest 3D printing technology and the STL files converted using democratiz3D®, the contralateral orbit can serve as a point of reference for those in the medical field since the ipsilateral structures taken with a CT scan can be easily converted into an STL file and then fed to a 3D printer. These technologies improve patient consultations, increase the quality of diagnostic information while also helping to improve the planning stage of the surgical process. During surgery, a 3D-printed model of the orbital can be used to orient surgical staff and serve as a guide for surgical resectioning procedures. While these files are available for free on the website, you must register with embodi3D® before you can begin uploading and converting your own CT scans into STL files as well as downloading and 3D printing anatomical models from other users. Every day the collection of anatomical models grows on the embodi3D® website. This is but one of the many ways embodi3D® is seeking to revolutionize medical practices. #1. An Awesome Model of the Orbit's Acute Anatomy The orbits are conical structures dividing the upper facial skeleton from the middle face and surround the organs of vision. Seven bones conjoin to form the orbital structure as we can see in the example below. #2. A 3D Model of the Orbit's Surface in STL Format This excellent 3D model of embodi3D® shows the superficial bony margin of the orbit, which is rectangular with rounded corners. The margin is discontinuous at the lacrimal fossa. The supraorbital notch (seen in the image below) is within the supraorbital rim and is closed to form the supraorbital foramen in 25% of individuals. The supratrochlear notch is medial to the supraorbital notch. #3. A CT Scan of an Orbital Floor Fracture Hisham published this excellent ct scan on embodi3D®. Direct fractures of the orbital floor can extend from fractures of the inferior orbital rim. Indications for repair of the orbital floor in these cases are the same as those for indirect (blowout) fractures. Indirect fractures of the orbital floor are not associated with fracture of the inferior orbital rim. #4. A 3D Model of an Orbital Fracture CT scans with coronal or sagittal views and 3D models help guide treatment. They allow evaluation of fracture size and extraocular muscle relationships, providing information that can be used to help predict enophthalmos and muscle entrapment. #5. 3D Model Showing an Orbital Fracture Dropbear upload this excellent example of a right orbit fracture. #6. An Orbit 3D Model (Printable) Showing Fibrous Dysplasia (FD) for Surgical Demonstration The FD is a benign slowly progressive disorder of bone, where normal cancellous bone is replaced by fibrous tissue and immature woven bone. This entity constitutes about 2.5 % of all bone tumors. References Choi, J. W., & Kim, N. (2015). Clinical application of three-dimensional printing technology in craniofacial plastic surgery. Archives of plastic surgery, 42(3), 267. Bibby, K., & McFadzean, R. (1994). Fibrous dysplasia of the orbit. British journal of ophthalmology, 78(4), 266-270.
  1. Load more activity
×
×
  • Create New...