Jump to content

3D Printed Skull and the embodi3D® Top 10 Skull and Head Anatomy

Angel Sosa


3D Printed Skull and the embodi3D® Top 10 Skull and Head Anatomy

This week, embodi3D® brings you the best 3D anatomical models of the skull and head region, including several fascinating files that you can use to create a 3D printed skull. For medical professionals, students, and researchers, understanding the structure of the human skull is an important part of delivering an accurate diagnosis. Using tools such as democratiz3D® also helps medical professionals such as radiologists and surgeons to prepare for unique operations. Recently, a team of surgeons at at Boston Children's Hospital used 3D printing to plan for a young patient's surgery with great success. Citing this case, the Bulletin of the American College of Surgeons praised the training and surgical education benefits of 3D printing.  


After checking out this week's Top 10 list, you may also find Dr. Mike's entires on "Creating a 3D Printable Skull from a CT Scan in 5 Minutes Using Freeware" and "A Ridiculously Easy Way to Convert CT Scans to 3D Printable Bone STL Models for Free in Minutes."


A 3D-printed skull shown with prominent fracture to the forehead.

A 3D-printed skull shown with prominent fracture to the forehead.


If you haven't already, be sure to register with embodi3D® to take advantage of all of the tools and conversion algorithms available to embodi3D® and democratiz3D® users. Registering is absolutely free and we have a number of tutorials available to help you get up and running as quickly as possible.



1. Excellent 3D-Printed Model of the Frontal Bone

Colloquially known as the "forehead," the frontal bone comprises the squamus, orbital, and nasal parts of the skull. It is one of eight bones that form the cranium, or brain case. The frontal bone plays a vital role in supporting and protecting the delicate nervous tissue of the brain. It gives shape to the skull and supports several muscles of the head. At its inferior border, the frontal bone forms the roof of the orbits and the brow. The coronal suture forms the posterior boundary of the frontal bone where it meets the parietal bones. The primary functions of the frontal bone are the protection of the brain and the support of the structures of the head. The hard mineral matrix of the frontal bone provides protection for the soft brain tissue. Although the frontal bone follows the ridges of the brain very closely, a small gap between the frontal bone and brain houses the meninges and the cerebrospinal fluid of the cranium. The pressure exerted by cerebrospinal fluid on the interior of the cranium holds the brain in place and prevents the brain from colliding with the skull.



2. A 3D Model of the Skull Base in Exquisite Detail

A 3D model of the skull base with exquisite detail. The skull base forms the floor of the cranial cavity and separates the brain from other facial structures. This anatomic region is complex and poses surgical challenges for otolaryngologists and neurosurgeons alike. Working knowledge of the normal and variant anatomy of the skull base is essential for effective surgical treatment of disease in this area.

The 5 bones that make up the skull base are the ethmoid, sphenoid, occipital, paired frontal, and paired temporal bones. The skull base can be subdivided into 3 regions: the anterior, middle, and posterior cranial fossae. (See the image below.) The petro-occipital fissure subdivides the middle cranial fossa into 1 central component and 2 lateral components. This article discusses each region, with attention to the surrounding structures, nerves, vascular supply, and clinically relevant surgical landmarks.



3. A 3D Model of the Paranasal Sinuses

The paranasal sinuses are air-filled spaces located within the bones of the skull and facial bones. They are centered on the nasal cavity and have various functions, including lightening the weight of the head, humidifying and heating inhaled air, increasing the resonance of speech, and serving as a crumple zone to protect vital structures in the event of facial trauma.  Four sets of paired sinuses are recognized: maxillary, frontal, sphenoid, and ethmoid (see the image below



4. Right Maxillary Bone Show in Anatomically Accurate Detail

The maxilla consists of maxillary bones that form the upper jaw; together they are the keystone of the face, for all other immovable facial bones are connected to them. Portions of these bones make up the front of the roof of the mouth (hard palate), the floors of the orbits, and the sides and floor of the nasal cavity. They also contain the sockets of the upper teeth. Inside the maxillae, on the sides the nasal cavity, are the maxillary sinuses (antrum of Highmore). These air-filled spaces are the largest of the sinuses, and they extend from the floor of the orbits to the roots of the upper teeth.




5. Create a 3D Printed Anatomical Sphenoid Bone

The sphenoid bone is wedged between several other bones in the front of the cranium. It consists of a central part and two wing-like structures that extend sideways toward each side of the skull. This bone helps form the base of the cranium, the sides of the skull, and the floors and sides of the orbits (eye sockets). Along the middle, within the cranial cavity, a portion of the sphenoid bone rise.



6. A Mandible (Jawbone) 3D Printed from a CT Scan with democratiz3D®

The mandible, or jawbone, is the only movable bone in the skull. It is the strongest and most massive bone in the face. The mandible plays a vital role in many common tasks, including chewing, speech, and facial expression. The mandible is one of the twenty-two bones that make up the skull and the only one of those bones that is not fused to its neighbors. It is often called the lower jawbone as it is located inferior to the maxillae, which contain the top row of teeth. Stretching from the left temporal bone to the right temporal bone, the mandible forms a flat arch with 16 teeth embedded in its superior surface. At the left and right temporal bones, the mandible begins as a pair of bony cylinders known as the condyles. The condyles form the temporomandibular joints (TMJ) with the temporal bones before narrowing into the necks of the mandible. From the necks, the mandible widens considerably as it descends obliquely in the inferior and anterior directions to form the rami of the mandible. A large pointed projection, known as the coronoid process, extends superiorly from each ramus and is separated from the condyle by the mandibular notch. The mandibular foramina, a pair of holes for nerves and blood vessels to enter the mandible and support the teeth, perforate the rami on their medial surface just below the coronoid process.





7. A Highly Detailed, 3D Printer-Ready File of the Ethmoid Bone  

The ethmoid bone is located in front of the sphenoid bone. It consists of two masses, one on each side of the nasal cavity, which is joined horizontally by thin cribriform plates. These plates form part of the roof of the nasal cavity, and nerves (ethmoidal cells) associated with the sense of smell pass through tiny openings in them. Portions of the ethmoid bone also form sections of the cranial floor, eye sockets, and nasal cavity walls. A perpendicular plate projects downward in the middle from the cribriform plates to form the bulk of the nasal septum. Delicate scroll-shaped plates called superior and middle nasal conchae project inward from the sides of the ethmoid bone toward the perpendicular plate. These bones, which are called the turbinate bones, support mucous membranes that line the nasal cavity.



8. A 3D-Printable Mandible (Jawbone) File

This excellent 3D-printed mandible and the the 3D printer-ready file come by way of Dr. Marco Vettorello. As you likely know, the mandible forms the lower portion of the skull. This upload shows all the nuances of the CT scan-generated, anatomically accurate mandible.   


9. Three-Dimensional Model of Labyrinthitis of the Inner Ear

Labyrinthitis is an inflammatory disorder of the inner ear, or labyrinth. Clinically, this condition produces disturbances of balance and hearing to varying degrees and may affect one or both ears. Bacteria or viruses can cause acute inflammation of the labyrinth in conjunction with either local or systemic infections. Autoimmune processes may also cause labyrinthitis. Vascular ischemia may result in acute labyrinthine dysfunction that mimics labyrinthitis. (




10. A 3D Printable Skull with Fracture (STL Format)

A 3D printable STL file of a face and skull with bone fractures was generated from real CT scan data and is thus anatomically accurate as it comes from a real person. Facial fractures occur for a variety of reasons related to sports participation: contact between players (eg, a head, fist, elbow); contact with equipment (eg, balls, pucks, handlebars); or contact with the environment, obstacles, or a playing surface (eg, wrestling mat, gymnastic equipment, goalposts, trees). Direct body contact accounts for the majority of sports-related injuries, and the most commonly associated soft tissue injuries were found in the head and neck region.  Sports like football, baseball, and hockey account for a high percentage of facial injuries among young adults. 

Forces that are required to produce a fracture of the facial bones are as follows:

Nasal fracture – 30 g

Zygoma fractures – 50 g

Mandibular (angle) fractures – 70 g

Frontal region fractures – 80 g

Maxillary (midline) fractures – 100 g

Mandibular (midline) fractures – 100 g

Supraorbital rim fractures – 200 g





1. Human Anatomy: Learn All About the Human Body at InnerBody.com. (2018). InnerBody. Retrieved 22 July 2018, from http://www.innerbody.com/


2. Medscape Reference - Comprehensive peer-reviewed medical condition, surgery, and clinical procedure articles with symptoms, diagnosis, staging, treatment, drugs and medications, prognosis, follow-up, and pictures. (2018). Reference.medscape.com. Retrieved 22 July 2018, from https://reference.medscape.com/


3. Kim, H., Roh, H., & Lee, I. (2016). Craniosynostosis : Updates in Radiologic Diagnosis. Journal Of Korean Neurosurgical Society, 59(3), 219. doi:10.3340/jkns.2016.59.3.219


Recommended Comments

There are no comments to display.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
  • Create New...